Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations

Authors

DOI:

https://doi.org/10.34194/geusb.v47.5284

Keywords:

Greenland ice sheet, albedo, ice ablation, PROMICE, Sentinel-3

Abstract

The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) provides surface meteorological and glaciological measurements from widespread on-ice automatic weather stations since mid-2007. In this study, we use 105 PROMICE ice-ablation time series to identify the timing of seasonal bare-ice onset preceded by snow cover conditions. From this collection, we find a bare-ice albedo at ice-ablation onset (here called bare-ice-onset albedo) of 0.565 ± 0.109 that has no apparent spatial dependence among 20 sites across Greenland. We then apply this snow-to-ice albedo transition value to measure the variations in daily Greenland bare-ice area in Sentinel-3 optical satellite imagery covering the extremely low and high respective melt years of 2018 and 2019. Daily Greenland bare-ice area peaked at 153 489 km² in 2019, 1.9 times larger than in 2018 (80 220 km²), equating to 9.0% (in 2019) and 4.7% (in 2018) of the ice sheet area.

Downloads

Download data is not yet available.

References

Ahlstrøm, A.P. et al. 2008: A new programme for monitoring the mass loss of the Greenland ice sheet. Geological Survey of Denmark and Greenland Bulletin 15, 61–64. https://doi.org/10.34194/geusb.v15.5045">https://doi.org/10.34194/geusb.v15.5045

Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M. & Tanaka, T. 2011: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. Journal of Geophysical Research 116(D11). https://doi.org/10.1029/2010jd015507">https://doi.org/10.1029/2010jd015507

Box, J.E., Fettweis, X., Stroeve, J.C., Tedesco, M., Hall, D.K. & Steffen, K. 2012: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere 6(4), 821–839. https://doi.org/10.5194/tc-6-821-2012">https://doi.org/10.5194/tc-6-821-2012

Box, J.E. & Sharp, M.A. 2017: Changes to Arctic land ice. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, 148–168. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP).

Box, J.E., van As, D. & Steffen, K. 2017: Greenland, Canadian and Icelandic land-ice albedo grids (2000–2016). Geological Survey of Denmark and Greenland Bulletin 38, 53–56. https://doi.org/10.34194/geusb.v38.4414">https://doi.org/10.34194/geusb.v38.4414

Brun, E. 1989: Investigation on wet-snow metamorphism in respect of liquid-water content. Annals of Glaciology 13, 22–26. https://doi.org/10.3189/s0260305500007576">https://doi.org/10.3189/s0260305500007576

Cook, J.M. et al. 2020: Glacier algae accelerate melt rates on the south-western Greenland ice sheet. The Cryosphere 14(1), 309–330. https://doi.org/10.5194/tc-14-309-2020">https://doi.org/10.5194/tc-14-309-2020

Cuffey, K.M. & Paterson, W.S.B. 2010: The physics of glaciers. Fourth edition. 704 pp. Amsterdam: Academic Press.

Fausto, R.S., van As, D., Box, J.E., Colgan, W., Langen, P.L. & Mottram, R.H. 2016: The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophysical Research Letters 43(6), 2649–2658. https://doi.org/10.1002/2016gl067720">https://doi.org/10.1002/2016gl067720

Fausto, R.S., van As, D., Ahlstrøm, A.P. & Citterio, M. 2012: Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer. Journal of Glaciology 58(212), 1144–1150. https://doi.org/10.3189/2012jog12j075">https://doi.org/10.3189/2012jog12j075

Fausto, R.S., van As, D., Antoft, J.A., Box, J.E. & Colgan, W. 2020: Greenland ice sheet melt area from MODIS (2000–2014). Geological Survey of Denmark and Greenland Bulletin 33, 57–60. https://doi.org/10.34194/geusb.v33.4498">https://doi.org/10.34194/geusb.v33.4498

Fettweis, X. et al. 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice sheet. The Cryosphere Discussions, 1–35. https://doi.org/10.5194/tc-2019-321">https://doi.org/10.5194/tc-2019-321

Kokhanovsky, A., Box, J.E., Vandecrux, B., Mankoff, K.D., Lamare, M., Smirnov, A. & Kern, M. 2020: The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sensing 12(2), 234. https://doi.org/10.3390/rs12020234">https://doi.org/10.3390/rs12020234

Kokhanovsky, A., Lamare, M., Mauro, B.D., Picard, G., Arnaud, L., Dumont, M., Tuzet, F., Brockmann, C. & Box, J.E. 2018: On the reflectance spectroscopy of snow. The Cryosphere 12(7), 2371–2382. https://doi.org/10.5194/tc-12-2371-2018">https://doi.org/10.5194/tc-12-2371-2018

Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A., Solberg, R., Böttcher, K., Hiltunen, M. & Ripper, E. 2015: Introduction to globSnow snow extent products with considerations for accuracy assessment. Remote Sensing of Environment 156, 96–108. https://doi.org/10.1016/j.rse.2014.09.018">https://doi.org/10.1016/j.rse.2014.09.018

Moon, T.A. et al. 2020: Greenland ice sheet. In: Blunden, J. & Arndt, D.S. (eds): State of the climate in 2019. Bulletin of the American Meteorological Society 101(8), S257–S260. https://doi.org/10.1175/BAMS-D-20-0086.1">https://doi.org/10.1175/BAMS-D-20-0086.1

Ryan, J.C., Hubbard, A., Irvine-Fynn, T.D., Doyle, S.H., Cook, J.M., Stibal, M. & Box, J.E. 2017: How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophysical Research Letters 44(12), 6218–6225. https://doi.org/10.1002/2017gl073661">https://doi.org/10.1002/2017gl073661

Ryan, J.C., Hubbard, A., Stibal, M., Irvine-Fynn, T.D., Cook, J., Smith, L.C., Cameron, K. & Box, J. 2018: Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nature Communications 9(1), 1065. https://doi.org/10.1038/s41467-018-03353-2">https://doi.org/10.1038/s41467-018-03353-2

Ryan, J.C., Smith, L.C., van As, D., Cooley, S.W., Cooper, M.G., Pitcher, L.H. & Hubbard, A. 2019: Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Science Advances 5(3), eaav3738. https://doi.org/10.1126/sciadv.aav3738">https://doi.org/10.1126/sciadv.aav3738

Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. 2011: Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. 2011 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA, 20–24 June 2011. https://doi.org/10.1109/icdcsw.2011.20">https://doi.org/10.1109/icdcsw.2011.20

Stibal, M. et al. 2017: Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophysical Research Letters 44(22), 11463–11471. https://doi.org/10.1002/2017gl075958">https://doi.org/10.1002/2017gl075958

Tedesco, M. & Fettweis, X. 2020: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. The Cryosphere 14(4), 1209–1223. https://doi.org/10.5194/tc-14-1209-2020">https://doi.org/10.5194/tc-14-1209-2020

van As, D. 2011: Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland. Journal of Glaciology 57(202), 208–220. https://doi.og/10.3189/002214311796405898">https://doi.og/10.3189/002214311796405898

van den Broeke, M., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R. & Oerlemans, J. 2008: Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. The Cryosphere 2(2), 179–189. https://doi.org/10.5194/tc-2-179-2008">https://doi.org/10.5194/tc-2-179-2008

van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T. & scikit-image contributors. 2014: scikit-image: image processing in Python. PeerJ 2, e453. https://doi.org/10.7717/peerj.453">https://doi.org/10.7717/peerj.453

Wang, W., Zender, C.S., van As, D., Smeets, P. & van den Broeke, M. 2015: An iterative, geometric, tilt correction method for radiation and albedo observed by automatic weather stations on snow-covered surfaces: application to Greenland. AGUFM 2015, C41B–0697.

Wehrlé, A. & Box, J.E. 2020a: Greenland bare ice albedo v1.0, Zenodo. https://doi.org/10.5281/zenodo.4244909">https://doi.org/10.5281/zenodo.4244909

Wehrlé, A. & Box, J.E. 2020b: SICE Tools v1.0, Zenodo. https://doi.org/10.5281/zenodo.4244905">https://doi.org/10.5281/zenodo.4244905

Wehrlé, A. & Box, J. 2021: SICE implementation of the Simple Cloud Detection Algorithm (SCDA) v2.0. GEUS Dataverse, V1. https://doi.org/10.22008/FK2/N0XWSJ">https://doi.org/10.22008/FK2/N0XWSJ

Williamson, C.J. et al. 2020: Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences 117(11), 5694–5705. https://doi.org/10.1073/pnas.1918412117">https://doi.org/10.1073/pnas.1918412117

Wiscombe, W.J. & Warren, S.G. 1980: A model for the spectral albedo of snow. I: pure snow. Journal of the Atmospheric Sciences 37(12), 2712–2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2" target="_base">https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2

Published

2021-04-19

How to Cite

Wehrlé, A., Box, J. E., Niwano, M., Anesio, A. M., & Fausto, R. S. (2021). Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. GEUS Bulletin, 47. https://doi.org/10.34194/geusb.v47.5284

Issue

Section

RESEARCH ARTICLE

Most read articles by the same author(s)

<< < 1 2