Regional climate-model performance in Greenland firn derived from in situ observations
DOI:
https://doi.org/10.34194/geusb.v35.4943Abstract
Recent record-warm summers in Greenland (Khan et al. 2015) have started affecting the higher regions of the ice sheet (i.e. the accumulation area), where increased melt has altered the properties of firn (i.e. multi-year snow). At high altitudes, meltwater percolates in the porous snow and firn, where it refreezes. The result is mass conservation, as the refrozen meltwater is essentially stored (Harper et al. 2012). However, in some regions increased meltwater refreezing in shallow firn has created thick ice layers. These ice layers act as a lid, and can inhibit meltwater percolation to greater depths, causing it to run off instead (Machguth et al. 2016). Meltwater at the surface also results in more absorbed sunlight, and hence increased melt in the accumulation area (Charalampidis et al. 2015). These relatively poorly understood processes are important for ice-sheet mass-budget projections.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Charalampos Charalampidis, Dirk van As, Peter L Langen, Robert S Fausto, Baptiste Vandecrux, Jason E Box
This work is licensed under a Creative Commons Attribution 4.0 International License.
GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.