GEUS Bulletin https://geusbulletin.org/index.php/geusb <p>GEUS Bulletin (eISSN: 2597-2154) is the current flagship journal published by the <a href="https://eng.geus.dk/" target="_blank" rel="noopener">Geological Survey of Denmark and Greenland (GEUS)</a>. Previously, the Geological Survey of Denmark and Greenland Bulletin (eISSN: 1904-4666). We are peer-reviewed and diamond open access. GEUS Bulletin publishes geoscience research papers, monographs and map descriptions for Denmark, Greenland and the Arctic region. We believe that open science benefits scientists, industry and society, so we do not charge publication fees and all our articles can be freely downloaded online. IF 2020: 1.163 5-year IF: 1.009 (Source: Journal Citation Report <sup>TM</sup>2020).</p> <p><strong>GEUS Bulletin is open for submissions to geoscientists whose research is focussed on Denmark, Greenland and the Arctic region. Read more in our <a href="https://geusbulletin.org/index.php/geusb/about">journal scope</a>.</strong></p> Geological Survey of Denmark and Greenland (GEUS) en-US GEUS Bulletin 2597-2162 <p><span data-contrast="auto">GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a&nbsp;</span><a href="https://creativecommons.org/licenses/by/4.0/"><span data-contrast="none">CC-BY 4.0 licence</span></a><span data-contrast="auto">, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the </span><a href="https://geusbulletin.org/index.php/geusb/oapolicy">full open access policy</a>.</p> The geological framework for Hvideklint, south-east Denmark, using glaciodynamic sequence stratigraphy https://geusbulletin.org/index.php/geusb/article/view/8304 <p><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">Glaciodynamic sequence stratigraphy provides a practical model for grouping and classifying complex geological data to aid interpretation of past climatic and environmental development in Quaternary successions. The principles of glaciodynamic sequence stratigraphy are applied here to summarise the complex glacial geological framework of Hvideklint on the island of Møn, south-east Denmark. The framework of the superimposed deformed Hvideklint is presented in a reconstructed geological cross-section of Hvideklint. For the construction of the architecture of the glaciotectonic complex, the interpretation of structures below sea level was based on a detailed new survey of the cliff section combined with construction of successive approximation balanced cross-sections. The new description is supported by drill hole data from the Jupiter database. Where chalk is not glaciotectonically deformed, the constructed depth to the top-chalk-surface is generally located about 30 m below sea level. In Hvideklint, thrust sheets with chalk are exposed 20 m above sea level, and the balanced cross-section constructions indicate that the décollement surface for a Hvideklint glaciotectonic complex is located about 80 m below sea level. Between the décollement level and the top of the complex, two or more thrust-fault flat-levels and connecting ramps add to the complex architecture of Hvideklint.</span></p> Stig A. Schack Pedersen Peter Gravesen Copyright (c) 2021 Stig A. Schack Pedersen, Peter Gravesen https://creativecommons.org/licenses/by/4.0 2021-12-14 2021-12-14 49 10.34194/geusb.v47.8304 Kortbladsbeskrivelse, Geologisk kort over Danmark, 1:50 000, Møn Dele af 1511 I, 1511 IV og 1512 II https://geusbulletin.org/index.php/geusb/article/view/8293 <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">Det geologiske kortblad Møn omfatter Møn med de tilgrænsende øer Langø, Lindholm og Nyord samt mindre dele af Sjælland og Falster. Kortet består af dele af de topografiske kortblade 1511 I og 1512 II samt 1511 IV med randområder af tilgrænsende kortblade mod vest og nord.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">Møn opdeles i tre geomorfologiske områder: det stærkt kuperede Høje Møn mod øst, det småbakkede landskab omkring Stege Nor mod vest, og det flade marine forland omkring Nyord og Ulfshale. Høje Møn opbygges af opskudte skiver af skrivekridt og kvartære aflejringer, som det ses i Møns Klint. Skiverne er op til 80 m tykke, hvoraf skrivekridtet udgør ca. 50 m. Under hele Møn består prækvartæroverfladen af Maastrichtien skrivekridt i en dybde omkring kote –25 til –40 m. Mindre skiver af glacialtektonisk forstyrret skrivekridt optræder også omkring Stege Nor og langs sydkysten af det vestlige Møn ved Hvideklint.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">De ældste kvartære aflejringer er moræneler fra Saale-istiden og sand og ler fra Eem-mellemistiden. Derefter følger fluviale aflejringer og nedskylslag fra Tidlig Weichsel. Disse lag efterfølges af moræneler fra Ristinge Klint Till Formationen med over- og underliggende smeltevandsaflejringer fra Mellem Weichsel dannet under Ristinge Isfremstødet for ca. 55 000–50 000 år siden. Den næste enhed er Kraneled Formationen (ny formation), som efterfølges af moræneler tilhørende Klintholm Till Formationen (justeret formation) fra Klintholm Isfremstødet for 35 000–32 000 år siden. Formationen overlejres af mere end 10 m tykke enheder af gråt til olivengråt issøler med dropsten, smeltevandssand og lamineret fint sand samt diamikte aflejringer i Kobbelgård Formationen (ny formation). Denne formation blev aflejret i en issø, som dækkede store dele af Østersøen i en mildningsperiode for 32 000– 28 000 år siden. Denne enhed overlejres af eller er øverst sammenflettet med sand og grus tilhørende Stubberup Have Formationen (ny formation). Moræneler tilhørende den Midtdanske Till Formation blev aflejret under NØ-Isfremstødet for 23 000–20 000 år siden. Efter at NØ-Isen var smeltet tilbage fra østersøområdet, rykkede den Ungbaltiske Is frem fra den østlige del af Østersøen, hvorunder bl.a. Møns Klint og Hvideklint blev deformeret. En tilhørende strukturel enhed, Møns Klint Glacialdynamiske Kompleks, er defineret med fire sekvenser. Hele Hjelm Bugt dannede en glacial lobe, og nord herfor dannedes et randmorænestrøg. Radialt ud fra loben dannede smeltevandet store afløbskanaler fra gletsjerporte i den Ungbaltiske Is. Aflejring af sand og grus tilhørende Ny Borre Formationen (ny formation) skete i dette tidsrum. Under det Ungbaltiske Isfremstød blev Lolland Till Formationen aflejret som et relativt tyndt lag af moræneler.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">Ved slutningen af Weichsel-istiden for ca. 17 000 år siden smeltede den Ungbaltiske Is tilbage. Et residualt isdække i området nordøst for Møn sendte et genfremstød til det østlige Møn, som medførte en reorientering af skrivekridtskiverne i Møns Klint. I Sen Weichsel (17 000–11 700 år før nu) fandtes søbassiner på det sydlige Møn ved Hjelm og Tøvelde samt på Høje Møn, hvor en række ferskvandslag blev dannet, og aflejringen fortsatte et stykke ind i Holocæn.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">I Holocæn blev de tidligere afløbskanaler transgrederet under den atlantiske havstigning, hvorved fjorde skar sig ind fra nord og nordvest til midt på Møn. Herefter begyndte udbygningen af marine forlande, især mod nord i området Ulvshale og Nyord. De tidligere fjorde voksede til med planter, som omdannedes til tørveaflejringer. Den sidste sedimentationsfase skete langs kysterne, hvor strandvolde blev akkumuleret, og kystklitter af flyvesand blev dannet.</p> Stig A. Schack Pedersen Peter Gravesen Copyright (c) 2021 Stig A. Schack Pedersen, Peter Gravesen https://creativecommons.org/licenses/by/4.0 2021-12-14 2021-12-14 49 10.34194/geusb.v48.8293 Long short-term memory networks enhance rainfall-runoff modelling at the national scale of Denmark https://geusbulletin.org/index.php/geusb/article/view/8292 <p><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">This study explores the application of long short-term memory (LSTM) networks to simulate runoff at the national scale of Denmark using data from 301 catchments. This is the first LSTM application on Danish data. The results were benchmarked against the Danish national water resources model (DK-model), a physically based hydrological model. The median Kling-Gupta Efficiency (KGE), a common metric to assess performance of runoff predictions (optimum of 1), increased from 0.7 (DK-model) to 0.8 (LSTM) when trained against all catchments. Overall, the LSTM outperformed the DK-model in 80% of catchments. Despite the compelling KGE evaluation, the water balance closure was modelled less accurately by the LSTM. The applicability of LSTM networks for modelling ungauged catchments was assessed via a spatial split-sample experiment. A 20% spatial hold-out showed poorer performance of the LSTM with respect to the DK model. However, after pre-training, that is, weight initialisation obtained from training against simulated data from the DK-model, the performance of the LSTM was effectively improved. This formed a convincing argument supporting the knowledge-guided machine learning (ML) paradigm to integrate physically based models and ML to train robust models that generalise well.</span></p> Julian Koch Raphael Schneider Copyright (c) 2022 Julian Koch, Raphael Schneider https://creativecommons.org/licenses/by/4.0 2022-01-13 2022-01-13 49 10.34194/geusb.v49.8292 Late Glacial and Holocene shore-level changes in the Aarhus Bugt area, Denmark https://geusbulletin.org/index.php/geusb/article/view/6530 <p><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">We propose a new relative shore-level curve for the Aarhus Bugt area, an embayment in eastern Jylland, Denmark, based on a compilation of published and new radiocarbon ages of organic material. Lakes existed in the area during the Late Glacial and Early Holocene. Lake level rose gradually until the region was inundated by the sea at </span><em style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">c.</em><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;"> 9000 cal. years BP. The relative sea level reached a high stand at about 6000 cal. years BP, when the local relative sea level was </span><em style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">c.</em><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;"> 3 m above present-day mean sea level. The Aarhus Bugt area was inundated by the sea later than the Limfjord area in northern Jylland, but earlier than the Lillebælt region in southern Denmark. The shore-level curves for these areas differ partly because the glacio-isostatic uplift was more pronounced in the Limfjord area than farther south and partly because the northern regions were inundated by the sea earlier than the southern areas.</span></p> Ole Bennike Katrine Juul Andresen Peter Moe Astrup Jesper Olsen Marit-Solveig Seidenkrantz Copyright (c) 2021 Ole Bennike, Katrine Juul Andresen, Peter Moe Astrup, Jesper Olsen, Marit-Solveig Seidenkrantz https://creativecommons.org/licenses/by/4.0 2021-09-23 2021-09-23 49 10.34194/geusb.v47.6530 New insights from field observations of the Younger giant dyke complex and mafic lamprophyres of the Gardar Province on Tuttutooq island, South Greenland https://geusbulletin.org/index.php/geusb/article/view/6526 <p><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">The Gardar Province of south Greenland is defined by the products of alkaline igneous magmatism during the Mesoproterozoic. The most laterally extensive Gardar intrusions are a series of giant dyke complexes best exposed on the Tuttutooq archipelago. We present new field observations and a geological map of north-east Tuttutooq island that provide fresh insights into the temporal evolution of the Younger giant dyke complex and two associated ultramafic lamprophyres. Our data demonstrate that distinctive crystallisation regimes occurred in different sectors of the dyke complex, leading to the formation of marginal gabbros and ovoid pod-like domains displaying lamination, modal layering and/or more evolved differentiates. We infer that at least two pulses of magma contributed to the formation of the Younger giant dyke complex. In addition, the relative ages of two ultramafic lamprophyre diatremes are constrained and attributed to two distinct phases of rifting in the Gardar Province.</span></p> Lot Koopmans Robert A. Webster Rory Changleng Lucy Mathieson Alasdair J. Murphy Adrian A. Finch William McCarthy Copyright (c) 2021 Lot Koopmans, Robert A. Webster, Rory Changleng, Lucy Mathieson, Alasdair J. Murphy, Adrian A. Finch, William McCarthy https://creativecommons.org/licenses/by/4.0 2021-06-16 2021-06-16 49 10.34194/geusb.v47.6526 The Permian to Cretaceous succession at Permpasset, Wollaston Forland: the northernmost Permian and Triassic in North–East Greenland https://geusbulletin.org/index.php/geusb/article/view/6523 <p><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">Permian to Triassic outcrops in East Greenland diminish significantly northwards. Understanding the northward extent, and nature, of the Permian and Triassic successions has implications for regional palaeogeographic reconstructions and exploration in adjacent offshore basins. Examining the structural relationships between the basement, Permian, Triassic, Jurassic and Cretaceous successions can further our understanding of the tectonic evolution of the region. Here, we describe a hitherto overlooked section through the Permian to Cretaceous from central Wollaston Forland and consider its structural context. The western side of Permpasset forms the upthrown eroded crest of a horst block, which provides exposure of the earliest stratigraphic intervals in the region. The fractured Caledonian basement is overlain by evaporitic marine limestone facies of the Karstryggen Formation, which are succeeded by shallow marine sandstones assigned to the Schuchert Dal Formation, both Upper Permian. The overlying unit records a period of fluvial deposition and is not possible to date. However, an Early to Middle Triassic age (Pingo Dal Group) seems most likely, given regional eustatic considerations. This is, therefore, the most northerly record of Triassic strata in North–East Greenland. West of the horst structure, fine-grained sandstones and bioturbated siltstones of the Jurassic (Oxfordian) Jakobsstigen Formation are recorded. These were downfaulted prior to a prolonged hiatus after which both the Triassic and Jurassic strata were draped by Cretaceous shales of the Fosdalen Formation. The Cretaceous succession is overlain by a thick basalt pile of Eocene age, heralding the opening of the North-East Atlantic. Glendonites overlie Oxfordian siltstones at the base of the middle Albian Fosdalen Formation. These were likely winnowed from slightly older Cretaceous strata and overlie the hiatus surface between the Jurassic and Cretaceous. This is the first record of glendonites from the Cretaceous of East Greenland and they are interpreted to record the Circum–Arctic late Aptian – early Albian cooling event.</span></p> Steven D. Andrews Henrik Nøhr-Hansen Pierpaolo Guarnieri Karen Dybkjær Sofie Lindström Peter Alsen Copyright (c) 2021 Steven D. Andrews, Henrik Nøhr-Hansen, Pierpaolo Guarnieri, Karen Dybkjær, Sofie Lindström, Peter Alsen https://creativecommons.org/licenses/by/4.0 2021-07-23 2021-07-23 49 10.34194/geusb.v47.6523 Jurassic stratigraphy of East Greenland https://geusbulletin.org/index.php/geusb/article/view/6521 <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">The East Greenland Rift Basin comprises a series of Jurassic subbasins with different crustal configurations, and somewhat different tectonic histories and styles. The roughly N–S elongated basin is exposed in central and northern East Greenland over a length of more than 600 km and a width of up to 250 km. The southernmost exposures are found in the largest subbasin in Jameson Land, while the northernmost exposures are on Store Koldewey and in Germania Land. The focus of the present revision is on the Jurassic, but the uppermost Triassic and lowermost Cretaceous successions are included as they are genetically related to the Jurassic succession. The whole succession forms an overall transgressive–regressive megacycle with the highest sea level and maximum transgression in the Kimmeridgian.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">The latest Triassic – Early Jurassic was a time of tectonic quiescence in East Greenland. Lower Jurassic deposits are up to about 950 m thick and are restricted to Jameson Land and a small down-faulted outlier in southernmost Liverpool Land. The Lower Jurassic succession forms an overall stratigraphic layer-cake package that records a shift from Rhaetian–Sinemurian fluvio-lacustrine to Pliensbachian – early Bajocian mainly shallow marine sedimentation.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">Onset of rifting in the late Bajocian resulted in complete reorganisation of basin configuration and drainage patterns, and the depositional basin expanded far towards the north. Post-lower Bajocian early-rift deposits are up to about 500–600 m thick and are exposed in Jameson Land, Liverpool Land, Milne Land, Traill Ø, Geographical Society Ø, Hold with Hope, Clavering Ø, Wollaston Forland, Kuhn Ø, Th. Thomsen Land, Hochstetter Forland, Store Koldewey and Germania Land. Upper Jurassic rift-climax strata reach thicknesses of several kilometres and are exposed in the same areas with the exception of Liverpool Land and Germania Land.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">In the southern part of the basin, the upper Bajocian – Kimmeridgian succession consists of stepwise backstepping units starting with shallow marine sandstones and ending with relatively deep marine mudstones in some places with sandy gravity-flow deposits and injectites. In the Jameson Land and Milne Land Subbasins, the uppermost Jurassic – lowermost Cretaceous (Volgian–Ryazanian) succession consists of forestepping stacked shelf-margin sandstone bodies with associated slope and basinal mudstones and mass-flow sandstones. North of Jameson Land, block-faulting and tilting began in the late Bajocian and culminated in the middle Volgian with formation of strongly tilted fault blocks, and the succession records continued stepwise deepening. In the Wollaston Forland – Kuhn Ø area, the Volgian is represented by a thick wedge of deep-water conglomerates and pebbly sandstones passing basinwards into mudstones deposited in fault-attached slope aprons and coalescent submarine fans.</p> <p style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">The lithostratigraphic scheme established mainly in the 1970s and early 1980s is here revised on the basis of work undertaken over subsequent years. The entire Jurassic succession, including the uppermost Triassic (Rhaetian) and lowermost Cretaceous (Ryazanian–Hauterivian), forms the Jameson Land Supergroup. The supergroup is subdivided into the Kap Stewart, Neill Klinter, Vardekløft, Hall Bredning, and Wollaston Forland Groups, which are subdivided into 25 formations and 48 members. Many of these are revised, and 3 new formations and 14 new members are introduced.</p> Finn Surlyk Peter Alsen Morten Bjerager Gregers Dam Michael Engkilde Carina Fabricius Hansen Michael Larsen Nanna Noe-Nygaard Stefan Piasecki Jens Therkelsen Henrik Vosgerau Copyright (c) 2021 Finn Surlyk, Peter Alsen, Morten Bjerager, Gregers Dam, Michael Engkilde, Carina Fabricius Hansen, Michael Larsen, Nanna Noe-Nygaard, Stefan Piasecki, Jens Therkelsen, Henrik Vosgerau https://creativecommons.org/licenses/by/4.0 2021-07-09 2021-07-09 49 10.34194/geusb.v46.6521 Inventory of onshore petroleum seeps and stains in Greenland: a web-based GIS model https://geusbulletin.org/index.php/geusb/article/view/6519 <p><span style="color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">A new inventory on onshore petroleum seeps and stains in Greenland has been released by the Geological Survey of Denmark and Greenland as a web-based GIS model on the Greenland Mineral Resources Portal: Petroleum Seeps and Stains in Greenland. Knowledge on oil and gas seeps, oil stains and solid bitumen occurrences provides key information on mineral and petroleum systems, especially in frontier basins. As the understanding of recent and previous migrations of fluids and gases is important for both mineral and petroleum explorations in Greenland, this new inventory has been developed to facilitate exploration and new activities. The classification includes the following types of occurrences: (1) oil seeps, (2) gas seeps, (3) mud diapirs, pingos and gas-rich springs, (4) oil stains in volcanics, carbonates and sandstones, (5) solid macroscopic bitumen and (6) fluid inclusions and other evidence of micro-seepage. The inventory comprises detailed information on localities, coordinates and sample numbers. It also includes descriptions of features and geology, references to data, reports and publications. All information is summarised in either a mineral or petroleum systems context. Petroleum seeps and stains have been reported from most Palaeozoic, Mesozoic and Cenozoic basins in Greenland where they add important information on petroleum systems, especially distribution and facies variation of source rocks, petroleum generation and later migration, accumulation, remigration, uplift and degradation. The inventory is designed to be updated with additional localities and descriptions and new organic geochemical data. This paper provides a general overview of classification, nomenclature, organisation and content of the inventory. We introduce the regional distribution of petroleum seeps and stains in Greenland and general interpretations in the context of mineral and petroleum systems.</span></p> Flemming G. Christiansen Jørgen A. Bojesen-Koefoed Copyright (c) 2021 Flemming G. Christiansen, Jørgen A. Bojesen-Koefoed https://creativecommons.org/licenses/by/4.0 2021-09-23 2021-09-23 49 10.34194/geusb.v47.6519