The PGE-Au Mineralisation of the Skaergaard intrusion: precious metal minerals, petrography and ore genesis

Authors

  • Nikolay S Rudashevsky CNT Instruments LLC, St. Petersburg, Russia
  • Troels F D Nielsen Department of Mapping and Mineral Resources, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark. https://orcid.org/0000-0002-4932-3869
  • Vladimir N Rudashevsky CNT Instruments LLC, St. Petersburg, Russia https://orcid.org/0000-0001-9521-7162

DOI:

https://doi.org/10.34194/geusb.v54.8306

Keywords:

Skaergaard intrusion, precious metal minerals, syn-magmatic, crystal mushes, South-East Greenland

Abstract

The Skaergaard PGE-Au Mineralisation, alias the Platinova Reef, is hosted in a series of mineralisation levels within a suite of bowl-shaped macrorhythmic layers in the upper Middle Zone of the Skaergaard intrusion. The intrusion is exposed 68°N in East Greenland. The occurrence defines its own type due to its exceptional structure and mineralogy. A wealth of mineralogical data is available in laboratory reports for individual samples and in peer-reviewed publications, but none of these account for the lateral and stratigraphic distribution of PGE and Au parageneses in the gabbros of the intrusion. In this study, we collate and describe the mineralogical data for the first-formed PGE-rich and last-formed gold-rich mineralisation levels and integrate these with petrogenetic models.

Recovery of >4000 grains of precious metal phases allow a detailed study of their distribution and compositions throughout the mineralisation, re-equilibration during cooling, inter-grain relationships and relationships to Cu-Fe sulphides and the gabbroic host rocks. The sulphides are dominated by bornite, chalcocite and minor chalcopyrite. All other sulphides, such as pentlandite, are very rare. Fifty-four different precious metal phases are identified in this study, and include the new IMA approved minerals skaergaardite (PdCu), nielsenite (Pd3Pb) and naldrettite (Pd2Sb). Precious metal phases include (1) intermetallic compounds and alloys of Cu and Pd; (2) intermetallic compounds and alloys of Au and Cu (Ag); (3) sulphides of Pd, Cu (Ag, Cd, Hg, Tl); (4) arsenides of Pd (Pt, Ni) and (5) intermetallic compounds of Pd, Cu with Sn, Pb, Te (Sb, Bi). Skaergaardite (PdCu) is the dominant PGE mineral in the lower and main PGE mineralisation level (Pd5). It is accompanied at the western margin of the intrusions by the sulphides vasilite (Pd16S7) and vysotskite (PdS) but is rare at the eastern margin, which is dominated by plumbide zvyagintsevite (Pd3Pb). Gold phases include a suite of intermetallic compounds and alloys from AuCu3 to native gold and are dominated by tetra-auricupride (AuCu). Gold is concentrated in the tops of individual mineralisation levels and in the uppermost precious metal–bearing mineralisation level, followed by stratiform Cu-rich mineralisation levels.

Precious metal parageneses demonstrate formation and re-equilibration from liquidus to subsolidus temperatures and control by local geochemical environments. The mineralisation is syn-magmatic and the result of fractionation and evolution in the remaining bulk-silicate liquid and crystal mushes. Fractionation led to sulphide saturation and formation of immiscible sulphide melt droplets. This was followed by reaction with mush melts and re-equilibration to lower temperatures, first under the roof and subsequently after slumping to the floor in mushes of macrorhythmic layers. Droplets of sulphide melt formed between 1030–1050°C and trapped precious metals. The subsequent reaction between sulphide melt and interstitial Fe-rich immiscible melt at c. 1015°C, and redistribution to coexisting melt and fluid, led to the separation of PGE, Au and Cu and their up- and inward transport. Magmatic fluids as well as volatile-rich residual silicate melts were retained in gabbros at the margins and resulted in precious metal parageneses in equilibrium with hydrous low-temperature silicate parageneses.

Downloads

Download data is not yet available.

References

Andersen, J.C.Ø. 2006: Postmagmatic sulphur loss in the Skaergaard Intrusion: Implications for the formation of the Platinova Reef. Lithos 92, 198–221. https://doi.org/10.1016/j.lithos.2006.03.033

Andersen, J.C.Ø., Rasmussen, H., Nielsen, T.F.D. & Rønsbo, J.C. 1998: The Triple Group and the Platinova gold and palladium reefs in the Skaergaard intrusion; stratigraphic and petrographic relations. Economic Geology 93, 488–509. https://doi.org/10.2113/gsecongeo.93.4.488

Andreasen, R., Peate, D.W. & Brooks, C.K. 2004: Magma plumbing systems in large igneous provinces: Inferences from cyclical variations in Palaeogene East Greenland basalts. Contributions to Mineralogy and Petrology 147, 438–452. https://doi.org/10.1007/s00410-004-0566-2

Annen, C., Latypov, R., Chistyakova, S., Cruden, A.R. & Nielsen, T.F.D. 2022: Catastrophic growth of totally molten magma chambers in months or years. Science Advances 8(38). https://doi.org/10.1126/sciadv.abq0394

Baker, H., Okamoto, H. & Henry, S.D. 1992: Alloy Phase Diagrams. ASM handbook 3. ASM International, Materials Park.

Barnes, S.J., Holwell, D.A. & Le Vaillant, M. 2017: Magmatic sulfide ore deposits. Elements 13(2), 89–95. https://doi.org/10.2113/gselements.13.2.89

Barnes, S.J., Le Vaillant, M., Godel, B. & Lesher, C.M. 2019: Droplets and bubbles: solidification of sulphide-rich vapour-saturated orthocumulates in the Norilsk-Talnakh Ni–Cu–PGE ore-bearing intrusions. Journal of Petrology 60(2), 269–300. https://doi.org/10.1093/petrology/egy114

Bernstein, S. & Nielsen, T.F.D. 2005: Chemical stratigraphy in the Skaergaard intrusion – a study of elemental variations over ca. 66 meters of drillcore from DDH 90-22. Geological Survey of Denmark and Greenland Report 2004/123, 31 pp. https://doi.org/10.22008/gpub/25943

Bird, D.K., Rogers, R.D. & Manning, C.E. 1986: Mineralized fracture systems of the Skaergaard Intrusion, East Greenland. Meddelelser om Grønland, Geoscience 16, 68 pp.

Bird, D.K., Brooks, C.K., Gannicott, R.A. & Turner, P.A. 1991: A gold-bearing horizon in the Skaergaard intrusion. Economic Geology 86(5), 1083–1092. https://doi.org/10.2113/gsecongeo.86.5.1083

Bollingberg, K. 1995: Textural and chemical evolution of the FeTi oxides during late- and post magmatic cooling of the Skaergaard intrusion, East Greenland, 113 pp. + supplementary electronic information. Unpublished MSc thesis, University of Copenhagen, Denmark.

Boudreau, A.E. 2004: PALLADIUM, a program to model the chromatographic separation of the platinum-group elements, base metals and sulfur in a solidifying pile of igneous crystals. The Canadian Mineralogist 42, 393–403. https://doi.org/10.2113/gscanmin.42.2.393

Boudreau, A. 2019: Hydromagmatic processes and platinum-group element deposits in layered intrusions, 284 pp. Cambridge University Press. https://doi.org/10.1017/9781108235617

Boudreau, A.E., Mathez, E.A. & McCallum I.S. 1986: Halogen geochemistry of the Stillwater and Bushveld Complexes: Evidence for transport of platinum-group elements by Cl-rich fluids. Journal of Petrology 27, 967–986. https://doi.org/10.1093/petrology/27.4.967

Boudreau, A.E. & Meurer, W.P. 1999: Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying crystal pile. Contributions to Mineralogy and Petrology 134, 174–185. https://doi.org/10.1007/s004100050477

Brey, G.P. & Köhler, T. 1990: Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing barometers. Journal of Petrology 31, 1353–1378. https://doi.org/10.1093/petrology/31.06.1313

Brooks, C.K. 2011: The East Greenland rifted volcanic margin. Geological Survey of Denmark and Greenland Bulletin 24, 96 pp. https://doi.org/10.34194/geusb.v24.4732

Cabri, L.J. 2003: A mineralogical evaluation of two samples for Skaergaard Minerals Corp, License 2000/10. In Beattie, M. J.V., Mountford, B. & Silitoe, R.(eds) 2004: Report on exploration activities conducted on Skaergaard mineral license during 2003; appendix 4, 65 pp.

Cabri, L.J., Beattie, M., Rudashevsky, N.S. & Rudashevsky, V.N. 2005a: Process mineralogy of Au, Pd and Pt ores from the Skaergaard intrusion, Greenland, using new technology. Minerals Engineering 18, 887–897. https://doi.org/10.1016/j.mineng.2005.01.021

Cabri, L.J., McDonald, A.M., Stanley, C.J., Rudashevsky, N.S., Poirier, G., Durham, B.R., Mungall, J.E. & Rudashevsky, V.N. 2005b: Naldrettite, Pd2Sb, a new intermetallic mineral from the Mesamax Northwest deposit, Ungava region, Québec, Canada. Mineralogical Magazine 69(1), 89–97. https://doi.org/10.1180/0026461056910236

Chen K., Yu, T., Zhang, Y. & Peng, Z. 1982: Tetra-auricupride, CuAu, discovered in China. Scientia Geologica Sinica 1982, 111–116 (in Chinese with English abstract).

Cho, J.O., Scoates, J.S., Weis, D. & Amini, M. 2022: Lead isotope geochemistry of plagioclase in the Skaergaard intrusion by LA-ICP-MS: Assessing the effects of crustal contamination and link with East Greenland flood basalts. Chemical Geology 592, 120723. https://doi.org/10.1016/j.chemgeo.2022.120723

Godel, B., Rudashevsky, N.S., Nielsen, T.F.D., Barnes, S.J. & Rudashevsky, V.N. 2014: New constraints on the origin of the Skaergaard intrusion Cu-Pd-Au mineralization: insights from high-resolution X-ray computed tomography. Lithos 190–191, 27–36. https://doi.org/10.1016/j.lithos.2013.11.019

Grokhovskaya T.L., Lapina, M.I. & Mokhov, A.V. 2009: Assemblages and genesis of platinum-group minerals in low-sulfide ores of the monchetundra deposit, Kola Peninsula, Russia. Geology of Ore Deposits 51(6), 467–485. https://doi.org/10.1134/s107570150906004x

Hanley, J.J., Pettke, T., Mungall, J.E. & Spooner, E.T.C. 2005: The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochimica et Cosmochimica Acta 69(10), 2593–2611. https://doi.org/10.1016/j.gca.2004.11.005

Holness, M.B., Nielsen, T.F.D. & Tegner, C. 2007: Textural maturity of cumulates: a record of chamber filling, liquidus assemblage, cooling rate and large-scale convection in mafic layered intrusions. Journal of Petrology 48,141–157. https://doi.org/10.1093/petrology/egl057

Holness, M.B., Stripp, G., Humphreys, M.C.S., Veksler, I.V., Nielsen, T.F.D. & Tegner, C. 2011: Silicate liquid immiscibility within the crystal mush: late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland. Journal of Petrology 52, 175–222. https://doi.org/10.1093/petrology/egq077

Holness, M.B., Tegner, C., Nielsen, T.F.D. & Charlier, B. 2017: The thickness of the mushy layer on the floor of the Skaergaard magma chamber at apatite saturation. Journal of Petrology 58(5), 909–932. https://doi.org/10.1093/petrology/egx040

Holwell, D.A. & Keays, R.R. 2014: The formation of low-volume, high-tenor magmatic PGE–Au sulfide mineralization in closed systems: evidence from precious and base metal geochemistry of the Platinova reef, Skaergaard intrusion, East Greenland. Economic Geology 109, 387–406. https://doi.org/10.2113/econgeo.109.2.387

Holwell, D.A., Keays, R.R., McDonald, I. & Williams, M.R. 2015: Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard intrusion, East Greenland. Contributions to Mineralogy and Petrology 170, 53. https://doi.org/10.1007/s00410-015-1203-y

Holwell, D.A., Barnes, S.J., Le Vaillant, M., Keays, R.R., Fisher, L.A. & Prasser, R. 2016: 3D textural evidence for the formation of ultra-high tenor precious metal bearing sulfide microdroplets in offset reefs: an extreme example from the Platinova Reef, Skaergaard intrusion, Greenland. Lithos 256-257, 55–74. https://doi.org/10.1016/j.lithos.2016.03.020

Hoover, J.D. 1989: The chilled marginal gabbro and other contact rocks of the Skaergaard intrusion. Journal of Petrology 30, 441–476. https://doi.org/10.1093/petrology/30.2.441

Irvine, T.N., Andersen, J.C.Ø. & Brooks, C.K. 1998: Included blocks (and blocks within blocks) in the Skaergaard intrusion: geological relations and the origins of rhythmic modally graded layers. Geological Society of America Bulletin 110, 1398–1447. https://doi.org/10.1130/0016-7606(1998)110<1398:ibabwb>2.3.co;2

Jakobsen, J.K., Tegner, C., Brooks, C.K., Kent, A.J.R., Lesher, C.E., Nielsen, T.F.D. & Wiedenbeck, M. 2010: Parental magma of the Skaergaard intrusion: constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes. Contributions to Mineralogy and Petrology 159, 61–79. https://doi.org/10.1007/s00410-009-0416-3

Karup-Møller, S. & Makovicky, E. 1999: The phase system Cu–Pd–S at 900 degrees, 725 degrees, 550 degrees, and 400 degrees C. Neues Jahrbuch Mineralogische Monatshefte 12, 551–567.

Karup-Møller, S., Makovicky, E. & Barnes, S.-J. 2008: The metal-rich portions of the phase system Cu-Fe-Pd-S at 1000°C, 900°C and 725°C: implications for mineralization in the Skaergaard intrusion. Mineralogical Magazine, 72(4), 941–951. https://doi.org/10.1180/minmag.2008.072.4.941

Keays, R.R. & Tegner, C. 2016: Magma chamber processes in the formation of the low-sulphide magmatic Au–PGE mineralization of the Platinova Reef in the Skaergaard intrusion, East Greenland. Journal of Petrology 56, 2319–2340. https://doi.org/10.1093/petrology/egv075

Knight, J. & Leitch, C.H.B. 2001: Phase relations in the system Au-Cu-Ag at low temperatures, based on natural assemblages. The Canadian Mineralogist 39(3), 889–905. https://doi.org/10.2113/gscanmin.39.3.889

Kullerud, G. 1957: The Cu-S system. Carnegie Institution of Washington Yearbook 56, 15–17.

Kullerud, G. 1967: High-temperature phase relations in the Cu-Fe-S system. Carnegie Institution of Washington Yearbook 66, 404–409.

Kuo, C.S. 2007: The Mineral Industries of Denmark, the Faroe Islands, and Greenland. US Geological Survey: Mineral Yearbook 2005, 8.1–8.4.

Larsen, R.B., Brooks, C.K. & Bird, D.K. 1992: Methane-bearing, aqueous, saline solutions in the Skaergaard intrusion, East Greenland. Contributions to Mineralogy Petrology 112, 428–437. https://doi.org/10.1007/bf00310472

Larsen, R.B. & Brooks, C.K. 1994: Origin and evolution of gabbroic pegmatites in the Skaergaard intrusion, East Greenland. Journal of Petrology 35, 1651–1679.

Larsen, R.B. & Tegner, C. 2006: Pressure conditions for the solidification of the Skaergaard intrusion: eruption of East Greenland flood basalts in less than 300,000 years. Lithos 92, 181–197. https://doi.org/10.1016/j.lithos.2006.03.032

Liu, Y. & Brenan, J. 2015: Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions. Geochimica et Cosmochimica Acta 159, 139–161 https://doi.org/10.1016/j.gca.2015.03.021

Lozhechkin, M.P. 1935: The Karabash deposit of cupriferous gold. Trudy UFAN SSSR 4, 35–44 (in Russian).

Lozhechkin, M.P.1939: New data on chemical composition of Cu-gold. Doklady Academii Nauk SSSR 24(5), 454–457 (in Russian).

Maes, S.M., Tikoff, B., Ferré, E.C., Brown, P.E. & Miller, J.D. Jr. 2007: The Sonju Lake layered intrusion, northeast Minnesota: internal structure and emplacement history inferred from magnetic fabrics. Precambrian Research 157, 269–288. https://doi.org/10.1016/j.precamres.2007.02.021

Manning, C.E. & Bird, D.K. 1986: Hydrothermal clinopyroxenes of the Skaergaard intrusion. Contributions to Mineralogy and Petrology 92, 437–447. https://doi.org/10.1007/bf00374426

McBirney, A.R. 1996: The Skaergaard Intrusion. Developments in Petrology 15, 147–180. https://doi.org/10.1016/s0167-2894(96)80007-8

McDonald, A.M., Cabri, L.J., Rudashevsky, N.S., Stanley, C.J., Rudashevsky, V.N. & Ross, K.C. 2008: Nielsenite, PdCu3, a new platinum-group intermetallic mineral species from the Skaergaard intrusion, Greenland. The Canadian Mineralogist 46, 709–716. https://doi.org/10.3749/canmin.46.3.709

McDonald, A.M., Cabri, L.J., Stanley, C.J., Good, D.J., Redpath, J., Lane, G., Spratt, J., Ames, D.E. 2015: Coldwellite, Pd3Ag2S, a new mineral species from the Marathon Deposit, Coldwell Complex, Ontario, Canada. The Canadian Mineralogist 53(5), 845–857. https://doi.org/10.3749/canmin.1500020

Miller, J.D. & Andersen, J.C.Ø. 2002: Attributes of Skaergaard-type PGE reefs. In: Boudreau, A. (ed.): Extended Abstracts, 9th International Platinum Conference, Montana, USA, 21–25 July 2002. 305–308.

Naldrett, A.J. 2004: Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer 728 pp. https://doi.org/10.1007/978-3-662-08444-1

Naldrett, A.J. 2011: Fundamentals of magmatic sulfide deposits. Reviews in Economic Geology 17, 1–50. https://doi.org/10.5382/Rev.17

Namur, O., Humphreys, M.C.S. & Holness, M.B. 2014: Crystallization of interstitial liquid and latent heat buffering in solidifying gabbros: Skaergaard intrusion, Greenland. Journal of Petrology 55, 1389–1427. https://doi.org/10.1093/petrology/egu028

Nielsen, T.F.D. 1978: The tertiary dike swarms of the Kangerdlugssuaq area, East Greenland. An example of magmatic development during continental break-up. Contributions to Mineralogy and Petrology 67, 63–78. https://doi.org/10.1007/bf00371634

Nielsen, T.F.D. 2004: The shape and volume of the Skaergaard intrusion, Greenland: Implications for mass balance and bulk composition. Journal of Petrology 45, 507–530. https://doi.org/10.1093/petrology/egg092

Nielsen, T.F.D. 2016: In situ fractionation and inward migration of the solidification front in the Skaergaard intrusion, East Greenland. Geological Survey of Denmark and Greenland Bulletin 35, 59–62. https://doi.org/10.34194/geusb.v35.4939

Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.S., Kretser, Y.L. & Rudashevsky, V.N. 2003a: PGE and sulphide phases of the precious metal mineralisation of the Skaergaard intrusion. Part 1. sample 90-23A, 807. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2003/47, 46 pp. https://doi.org/10.22008/gpub/19014

Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.S., Kretser, Y.L. & Rudashevsky, V.N. 2003b: PGE and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Part 2. sample 90–24, 1057. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2003/48, 83 pp. https://doi.org/10.22008/gpub/19015

Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.S., Kretser, Y.L. & Rudashevsky, V.N. 2003c: PGE and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Part 3. sample 90–18, 1010. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2003/52, 67 pp. https://doi.org/10.22008/gpub/25331

Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.S., Kretser, Y.L. & Rudashevsky, V.N. 2003d: PGE and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Part 4. sample 90-23A, 806. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2003/53, 40 pp. https://doi.org/10.22008/gpub/25332

Nielsen, T.F.D., Rasmussen, H., Rudashevsky, N.S., Kretser, Y.L. & Rudashevsky, V.N. 2003e: PGE and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Part 5. sample 90-23A, 808. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2003/54, 37 pp. https://doi.org/10.22008/gpub/25333

Nielsen, T.F.D., Andersen, J.C.Ø. & Brooks, C.K. 2005: The Platinova reef of the Skaergaard intrusion. In: Mungall, J.E. (ed.): Exploration for platinum-group element deposits, 431–455. MAC Short Course 35. Ottawa: Mineralogical Association of Canada.

Nielsen, T.F.D., Andersen, J.C.Ø., Holness, M.B., Keiding, J.K., Rudashevsky, N.S., Rudashevsky, V.N., Salmonsen, L.P., Tegner, C. & Veksler, I.V. 2015: The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber scale precious metal redistribution by immiscible Fe-rich melt. Journal of Petrology 56, 1643–1976. https://doi.org/10.1093/petrology/egv049

Nielsen, T.F.D., Rudashevsky, N.S., Rudashevsky, V.N., Weatherley, S.M. & Andersen, J.C.Ø. 2019a: Elemental distributions and mineral parageneses of the Skaergaard PGE–Au mineralization. Consequences of accumulation, redistribution, and equilibration in an upward-migrating mush zone. Journal of Petrology 60, 1903–1934. https://doi.org/10.1093/petrology/egz057

Nielsen, T.F.D., Brooks, C.K. & Keiding, J.K. 2019b: Bulk liquid for the Skaergaard intrusion and its PGE-Au mineralization: composition, correlation, liquid line of fescent, and timing of sulphide saturation and silicate–silicate immiscibility. Journal of Petrology 60, 1853–1880. https://doi.org/10.1093/petrology/egz055

Norton. D. & Taylor, H.P. 1979: Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. Journal of Petrology 20, 421–486. https://doi.org/10.1093/petrology/20.3.421

Norton, D., Taylor, H.P. & Bird, D.K. 1984: The geometry and high-temperature brittle deformation of the Skaergaard intrusion. Journal of Geophysical Research, Solid Earth 89(B12) 10178–10192. https://doi.org/10.1029/jb089ib12p10178

Novgorodova, M.I. 1983: Native Metals in Hydrothermal Ores. Moscow: Nauka (in Russian).

Okamoto, H., Chakrabarti, D.J., Laughlin, D.E. & Massalski, T.B. 1987: The Au−Cu (Gold-Copper) system. Journal of Phase Equilibria 8(5), 454. https://doi.org/10.1007/bf02893155

Peregoedova, A., Barnes, S.-J. & Baker, D.R. 2004: The formation of Pt–Ir alloys and Cu–Pd-rich sulfide melts by partial desulfurization of Fe–Ni–Cu sulfides: results of experiments and implications for natural systems. Chemical Geology 208, 247–264. https://doi.org/10.1016/j.chemgeo.2004.04.015

Pokrovskii, P.V., Murzin, V.V., Berzon, R.O. & Yunikova, B.A. 1979: Mineralogy of native gold at the Zolotaya Gora deposit. Zapiski Vsesojuznogo mineralogicheskogo Obshestva 108(3), 317–326 (in Russian).

Prendergast, M.D. 2000: Layering and precious metals mineralization in the Rincon del Tigre complex, Eastern Bolivia. Economic Geology 95, 113–130. https://doi.org/10.2113/gsecongeo.95.1.113

Rudashevsky, N.S., Lupal, S.D. & Rudashevsky, V.N. 2001: The hydraulic classifier. Russia patent N 2165300. Russian Federation. Patent Cooperation Treaty PCT/ RU01/ 00123 (Moscow: 20 April 2001; 10 May 2001) (in Russian and English).

Rudashevsky, N.S., Garuti, G., Andersen, J.C.Ø., Kretser, Y.L., Rudashevsky, V.N. & Zaccarini, F. 2002: Separation of accessory minerals from rocks and ores by hydroseparation (HS) technology: method and application to CHR-2 chromitite, Niquelândia intrusion, Brazil. Incorporating the Aus IMM Proceedings. Applied Earth Science Transactions of the Institution of Mining and Metallurgy: Section B 111(1) 87–94.

Rudashevsky, N.S., McDonald, A.M., Cabri, L.J., Nielsen, T.F.D., Stanley, C.J., Kretzer, Y.L. & Rudashevsky, V.N. 2004: Skaergaaardite, PdCu, a new platinum-group intermetallic mineral from the Skaergaard intrusion, Greenland. Mineralogical Magazine 68, 615–632. https://doi.org/10.1180/0026461046840208

Rudashevsky, N.S. & Rudashevsky, V.N. 2005a: Gold, PGE, and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Sample 90–24, 1018. Part 29, 19 pp. Unpublished Geological Survey of Denmark and Greenland report.

Rudashevsky, N.S. & Rudashevsky, V.N. 2005b: PGE, gold, and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Sample 90–24, 1022. Part 28, 21 pp. Unpublished Geological Survey of Denmark and Greenland report.

Rudashevsky, N.S. & Rudashevsky, V.N. 2006a: PGE, gold, and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Sample 90–24, 1045N. Part 21, 17 pp. Unpublished Geological Survey of Denmark and Greenland report.

Rudashevsky, N.S. & Rudashevsky, V.N. 2006b: PGE, gold and sulphide phases of the precious metal mineralization of the Skaergaard intrusion. Sample 90–24, 1034. Part 24, 25 pp. Unpublished Geological Survey of Denmark and Greenland report.

Rudashevsky, N.S. & Rudashevsky, V.N. 2006c: Hydraulic classifier. Russian Federation Patent No. 2281808 Moscow (in Russian).

Rudashevsky, N.S. & Rudashevsky, V.N. 2007: Hydraulic classifier. Russian Federation Patent No. 694418, Moscow (in Russian).

Rudashevsky, N.S., Kretser, Y.L., Rudashevsky, V.N. & Nielsen, T.F.D. 2009a: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 7, sample 90-18 958. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2009/68, 16 pp. https://doi.org/10.22008/gpub/27900

Rudashevsky, N.S., Kretser, Y.L., Rudashevsky, V.N. & Nielsen, T.F.D. 2009b: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 6, sample 90-23A 798. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2009/54, 17 pp. https://doi.org/10.22008/gpub/27886

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2010a: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 8, sample 90-18 972. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/73, 19 pp. https://doi.org/10.22008/gpub/28378

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2010b: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 9, sample 90-18 978. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/74, 21 pp. https://doi.org/10.22008/gpub/28379

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2010c: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 10, sample 90-18 988. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/85, 16 pp. https://doi.org/10.22008/gpub/28390

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2010d: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 11, sample 90-24 1062. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/138, 17 pp. https://doi.org/10.22008/gpub/28444

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012a: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 12, sample 90-18 1001. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/91, 13 pp. https://doi.org/10.22008/gpub/29478

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012b: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 13, sample 90-18 1012. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/92, 20 pp. https://doi.org/10.22008/gpub/29479

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012c: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 14, sample 90-10 434. Geological Survey of Denmark and Greenland Report 2012/93, 19 pp. https://doi.org/10.22008/gpub/29480

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012d: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 15, sample 90-10 443. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/94, 19 pp. https://doi.org/10.22008/gpub/29481

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012e: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 16, sample 90-10 445. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/95, 16 pp. https://doi.org/10.22008/gpub/29482

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012f: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 17, sample 90-24 1059. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/96, 17 pp. https://doi.org/10.22008/gpub/29483

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012g: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 18, sample 90-24 1056. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/97, 20 pp. https://doi.org/10.22008/gpub/29484

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2012h: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 19, sample 90-24 1053. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/98, 15 pp. https://doi.org/10.22008/gpub/29485

Rudashevsky, N.S., Rudashevsky, VN. & Nielsen, T.F.D. 2012i: Gold, PGE and sulfide phases of the precious metal mineralization of the Skaergaard intrusion. Part 20, sample 90-24 1048. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2012/104, 20 pp. https://doi.org/10.22008/gpub/29491

Rudashevsky, N.S., Rudashevsky, V.N., Nielsen, T.F.D. & Shebanov, A.D. 2014: Au-Cu alloys and inter-metallides in Pd-Au ores of the Skaergaard massif. Proceedings of the Russian Mineralogical Society 143, 1–23.

Rudashevsky, N.S., Rudashevsky, V.N. & Nielsen, T.F.D. 2015: Intermetallic compounds, of copper and palladium alloys in Au-Pd ore of the Skaergaard pluton, Greenland. Geology of Ore Deposits 57, 674-690. https://doi.org/10.1134/s1075701515080085

Rudashevsky, N.S., Rudashevsky, V.N. & Antonov, A.V. 2018: Universal mineralogical technology of research for rocks, ores, and process products. Regional Geology and Metallogeny 73, 88–102.

Salmonsen, L.P. & Tegner, C. 2013: Crystallization sequence of the Upper Border series of the Skaergaard intrusion: revised subdivision and implications for chamber-scale magma homogeneity. Contributions to Mineralogy and Petrology 165, 1155–1171. https://doi.org/10.1007/s00410-013-0852-y

Savitsky, E.M. 1984: Handbook of Precious Metals (in Russian), 600 pp. Metallurgiya Publishers, Moscow, Russia. Translated to English 1989, Hemisphere Publishing Corporation, New York, USA.

Schubert, K., Kiefer, B., Wilkens, M. & Haufler, R. 1955: Über einige metallische Ordnungsphasen mit grosser Periode. International Journal of Materials Research (formerly Zeitschrift für Metallkunde) 46, 692–715. https://doi.org/10.1515/ijmr-1955-460917

Spiridonov, E.M. 2010a: Review of gold mineralogy in leading types of Au mineralization, in Zoloto Kol’skogo poluostrova i sopredel’nykh regionov (Gold of Kola Peninsula and Adjacent Regions). Apatity 2010, 143–171.

Spiridonov, E.M. 2010b: Ore-magmatic systems of the Noril’sk ore field. Russian Geology and geophysics 51(9), 1059–1077. https://doi.org/10.1016/j.rgg.2010.08.011

Spiridonov, E.M. & Pletnev, P.A. 2002: Mestorozhdenie medis togo zolota Zolotaya Gora (Zolotaya Gora Deposit of Copper Gold), Moscow: Nauchnyi mir. I.

Spiridonov, E.M., Ryachovskaya, S.K. & Pletnev, P.A. 2005: Hydrothermal minerals Au-Cu: paragenesis. Conditions of formation, synthesis, solid-phase transformations, 314–316. XV Russian meeting on experimental mineralogy, Syktyvkar.

Subramanian, P.R. & Laughlin, D.E. 1991: Cu–Pd (copper-palladium). Journal of Phase Equilibria 12, 231–243. https://doi.org/10.1007/bf02645723

Svennevig, K. & Guarnieri, P. 2012: From 3D mapping to 3D modelling: a case study from the Skaergaard intrusion, southern East Greenland. Geological Survey of Denmark and Greenland Bulletin 26, 57–60. https://doi.org/10.34194/geusb.v26.4754

Tegner, C., Thy, P., Holness, M.B., Jakobsen, J.K. & Lesher, C.E. 2009: Differentiation and compaction in the Skaergaard intrusion. Journal of Petrology 50, 813–840. https://doi.org/10.1093/petrology/egp020

Thy, P., Lesher, C.E. & Tegner, C. 2013: Further work on experimental plagioclase equilibria and the Skaergaard liquidus temperature. American Mineralogist 98, 1360–1367. https://doi.org/10.2138/am.2013.4044

Turner, P.A. & Mosher, W. 1989: Report of 1988 field season: Skaergaard concession and East Greenland concession license, 71 pp. Platinova Resources Ltd/Corona Corporation Joint Venture. Geological Survey of Denmark and Greenland unpublished report, GRF 20845.

Wager, L.R. & Deer, W.A. 1939: Geological investigations in East Greenland: Part III. The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland. Meddelelser om Grønland 105, 352 pp.

Wager, L.R. & Brown, G.M. 1968: Layered Igneous Rocks, 588 pp. Oliver & Boyd.

Watts, Griffis & McOuat Ltd. 1991: 1990 Skaergaard project, Platinova/Corona concession, East Greenland. Exploration report, 55 pp. Geological Survey of Denmark and Greenland unpublished report, GRF 20848.

Wernette, B., Li, P. & Boudreau, A. 2020: Sulfides, native metals, and associated trace minerals of the Skaergaard intrusion, Greenland: evidence for late hydrothermal fluids. Mineralium Deposita 55, 1197–1214. https://doi.org/10.1007/s00126-019-00924-1

Wotzlaw, J.-F., Bindeman, I.N., Schaltegger, U., Brooks, C.K. & Naslund, H.R. 2012: High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth and Planetary Science Letters 355–356, 199–212. https://doi.org/10.1016/j.epsl.2012.08.043

Yakich, T.Y., Ananyev, Y.S., Ruban, A.S., Gavrilov, R.Y., Lesnyak, D.V., Levochskaia, D.V., Savinova, O.V. & Rudmin, M.A. 2021: Mineralogy of the Svetloye epithermal district, Okhotsk-Chukotka volcanic belt, and insights for exploration. Ore Geology Reviews 136. 104257. https://doi.org/10.1016/j.oregeorev.1042573

Zaccarini, F., Anikina, E., Pusharev, E., Rusin, I. & Garutti, G. 2004: Palladium and gold minerals from the Baronskoe-Kluevsky ore deposit (Volkovsky complex, Central Urals, Russia). Mineralogy and Petrology 82, 137–156. https://doi.org/10.1007/s00710-004-0049-1

Zajacz, Z., Candela, P.A., Piccoli, P.M., Sanchez-Valle, C. & Wälle, M. 2013: Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochimica et Cosmochimica Acta 112, 288–304. https://doi.org/10.1016/j.gca.2013.02.026

Schematic drawings illustrating the processes of formation of the Skaergaard intrusion in Greenland

Published

27-07-2023

How to Cite

Rudashevsky , N. S., Nielsen, T. F. D., & Rudashevsky, V. N. (2023). The PGE-Au Mineralisation of the Skaergaard intrusion: precious metal minerals, petrography and ore genesis. GEUS Bulletin, 54. https://doi.org/10.34194/geusb.v54.8306