How to Cite
Share
Abstract
CO2 storage presents new risks and challenges, where the properties of formation water play an important role. These challenges include reduced injectivity and storage capacity due to salt precipitation, viscous fingering caused by viscosity contrasts between CO2 and brine and diminished CO2 solubility in formation waters. Understanding these factors and developing predictive models for pressure distribution are essential for successful CO2 storage projects. This study presents salinity (Cl and total dissolved solids), density, temperature, pressure, halite (NaCl) saturation, CO2 solubility and viscosity of formation waters across five CO2 storage sites in Denmark (Stenlille, Gassum, Rødby, Lisa and Inez), covering eight reservoirs (one in the Frederikshavn Formation, four in the Gassum Formation and three in the Bunter Sandstone and Skagerrak Formations). Salinity assessments are based on existing brine data or, where unavailable, a reference salinity model developed from a water chemistry database with 77 analyses from 28 wells in the Danish Basin and adjacent regions. The model was created using Partial Least Squares regression, accounting for local geological developments and subsurface salts. We report high chloride levels (182 000–202 000 mg/L) and densities (1.21–1.23 kg/L) in the Bunter Sandstone and Skagerrak Formations, while the Gassum and Frederikshavn Formations are undersaturated with halite, exhibiting lower chloride levels (99 000–148 000 mg/L) and densities (1.11–1.17 kg/L). These differences suggest a higher risk of mineral precipitation due to brine evaporation in dry CO2, and a higher risk of density override due to significant density contrast, which will hamper filling efficiency in older reservoirs. Modelling shows that CO2 solubility reaches 33.9 g CO2/L, with a 37% reduction due to chemical and pressure–temperature variations. Conceptual fluid flow modelling is recommended to further assess brine–rock–CO2 interactions. The salinity model has implications for geothermal reservoir assessment and can be applied regionally.
How to Cite
Share
Copyright (c) 2025 Niels H Schovsbo, Hanne D Holmslykke, Anders Mathisen, Carsten M Nielsen

This work is licensed under a Creative Commons Attribution 4.0 International License.
Data Availability Statement
One Excel spreadsheet containing Supplementary Table S1 (Geo-chemical database), Table S2 (input file for the geochemical model-ling) and Table S3 (output files for geochemical modelling) is available at https://doi.org/10.22008/FK2/X2GUT9.
Supplementary Files
Funding
This study is funded from the GEUS CCS2020–2024 project for matu-ration of selected structures to CO2 storage siteDownloads
Issue edited by Jon R. Ineson (GEUS).
This special issue of GEUS Bulletin contains a series of papers that present results of the "CCS2022–2024" project, led by the Geological Survey of Denmark and Greenland (GEUS). The project has acquired and interpreted new 2D seismic data between 2022 to 2024 to investigate [...]
References
- Abramowitz, T. et al. 2024: The Rødby structure. Seismic data and interpretation to mature potential geological storage of CO2. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2024/18, 143 pp.
- Appelo, C.A.J. & Postma, D. 2005: Geochemistry, groundwater and pollution. 2nd ed. A. Balkema Publisher, London.
- Berg, S. & Ott, H. 2013: Stability of CO2-Brine Primary Drainage. Energy Procedia 37, 4568–4574.
- Bertelsen, F. 1980: Lithostratigraphy and depositional history of the Danish Triassic. Danmarks Geologiske Undersøgelse, Serie B 4, 59 pp.
- Bjerager, M. et al. 2024: CCS2022–2024 WP1: The thorning structure. Seismic data and interpretation to mature potential geological storage of CO2. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2024/27, 187 pp.
- Bonnesen, E.P., Larsen, F., Sonnenborg, T.O., Klitten, K. & Stemmerik, L. 2009: Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time. Hydrogeology Journal 17, 1643–1663.
- Collins, A.G. 1987: Properties of produced waters. In: Bradley, H.B. (ed.): Petroleum engineering handbook, 24-1–24-23, Society of Petroleum Engineers (SPE), Richardson, TX, U.S.A.
- Cui, G., Hu, Z., Ning, F., Jiang, S. & Wang, R. 2023: A review of salt precipitation during CO2 injection into saline aquifers and its potential impact on carbon sequestration projects in China. Fuel 334, 126615. https://doi.org/10.1016/j.fuel.2022.126615
- Danish American Prospecting. 1951: Gassum-1 Completion report. GEUS Report File 4518, 344 pp.
- Deng, K., Lin, Y., Ning, H., Liu, W., Singh, A. & Zhang, G. 2018: Influences of temperature and pressure on CO2 solubility in saline solutions in simulated oil and gas well environments. Applied Geochemistry 99, 22–30.
- Dewar, M., Blackford, J., Espie, T., Wilford, S. & Bouffin, N. 2022: Impact potential of hypersaline brines released into the marine environment for CCS reservoir pressure management. International Journal of Greenhouse Gas Control 114, 103559.
- Dinesen, B. 1961: Salt mineralvand fra Danmarks dybere undergrund. Danmarks Geologiske Undersøgelse IV. Række 4(6), 20 pp.
- Edem, D.E., Abba, M.K., Nourian, A., Babaie, M. & Naeem, Z. 2022: Experimental study on the interplay between different brine types/concentrations and CO2 injectivity for effective CO2 storage in deep saline aquifers. Sustainability 14, 986.
- Erlström, M., Boldreel, L.O., Lindström, S., Kristensen, L., Mathiesen, A., Andersen, M.S., Kamla, E. & Nielsen, L.H. 2018: Stratigraphy and geothermal assessment of Mesozoic sandstone reservoirs in the Øresund Basin – exemplified by well data and seismic profiles. Bulletin of the Geological Society of Denmark 66, 123–149.
- Erlström, M. & Sivhed, U. 2012: Pre-Rhaetian Triassic strata in Scania and adjacent offshore areas – stratigraphy, petrology and subsurface characteristics. SGU Rapporter och meddelanden 132, 1–74. https://resource.sgu.se/dokument/publikation/rm/rm132rapport/rm132-rapport.pdf
- Esbensen, K.H. & Geladi, P. 2010: Principles of proper validation: use and abuse of re-sampling for validation. Journal of Chemometrics 24, 168–187.
- Esbensen, K.H. & Swarbrick, B. 2018: Multivariate data analysis. 6th ed. 462 pp. CAMO Software AS, Oslo, Norway.
- Francke, H. & Thorade, M. 2010: Density and viscosity of brine: an overview from a process engineer’s perspective. Chemie der Erde 70(S3), 23–32.
- Frykman, P. & Wessel-Berg, D. 2014: Dissolution trapping – convection enhancement limited by geology. Energy Procedia 63, 5467–5478.
- Fuchs, S., Balling, N. & Mathiesen, A. 2019: Deep basin temperature and heat-flow field in Denmark – new insights from borehole analysis and 3D geothermal modelling. Geothermics 83, 101722.
- Fyhn, M.B.W., Mathiesen, A., Nørmark, E., Mørk, F., Smit, F., Vosgerau, H., Laghari, S., Funck, T., Jusri, T. & Gregersen, U. 2024: CCS2022–2024 WP1: The Jammerbugt structure. Seismic data and interpretation to mature potential geological storage of CO2. GEUS. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2024/11.
- Geluk, M.C. 2000: Late Permian (Zechstein) carbonate-facies maps, the Netherlands. Geologie en Mijnbouw. Netherlands Journal of Geosciences 79, 17–27.
- Gregersen, U. et al. 2023: CCS2022–2024 WP1: The Stenlille structure. Seismic data and interpretation to mature potential geological storage of CO2. GEUS. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2022/26.
- Gregersen, U. et al. 2025: Seismic investigations of eight geological structures for potential storage of CO2 in Denmark: an introduction. GEUS Bulletin 60, 8385.
- Gulf Denmark. 1968: Ørslev-1 Completion report. GEUS Report File 6509, 51 pp.
- Hjelm, L., Anthonsen, K.A., Dideriksen, K., Nielsen, C.M., Nielsen, L.H. & Mathiesen, A. 2022: Capture, storage and use of CO2 (CCUS) evaluation of the CO2 storage potential in Denmark. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2020/46, 143 pp.
- Hjuler, M.L., Olivarius, M., Boldreel, L.O., Kristensen, L., Laier, T., Mathiesen, A., Nielsen, C.M. & Nielsen, L.H. 2019: Multidisciplinary approach to assess geothermal potential, Tønder area, North German Basin. Geothermics 78, 211–223.
- Holloway, S. 2005: Underground sequestration of carbon dioxide – a viable greenhouse gas mitigation option. Energy 30(11–12), 2318–2333.
- Holmslykke, H.D., Schovsbo, N.H., Kristensen, L., Weibel, R. & Nielsen, L.H. 2019: Characterising brines in deep Mesozoic sandstone reservoirs, Denmark. Geological Survey of Denmark and Greenland Bulletin 43, e2019430104, 1–5.
- Holmslykke, H.D., Weibel, R., Olsen, D. & Anthonsen, K.L. 2023: Geochemical reactions upon injection of heated formation water in a Danish geothermal reservoir. ACS Earth and Space Chemistry 7(9), 1635–1647.
- IPCC. 2023: Climate change 2023: synthesis report. In: Core Writing Team, Lee, H. & Romero, J. (eds.): Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 184 pp.
- Islam, A.W., Meckel, T.W., Sun, A.Y. & Krishnamurthy, P.G. 2016: Numerical experiments of density driven CO2 saturated brine migration in heterogeneous two-dimensional geologic fabric materials. International Communications in Heat and Mass Transfer 71, 148–156.
- Jiang, L., Wang, S., Abudula, A., Liu, Y. & Song, Y. 2019: The effect of density difference on the development of density-driven convection under large Rayleigh number. International Journal of Heat and Mass Transfer 139, 1087–1095.
- Kazmierczak, J., Marty, N., Weibel, R., Nielsen, L.H. & Holmslykke, H.D. 2022: The risk of scaling in Danish geothermal plants and its effect on the reservoir properties predicted by hydrogeochemical modelling. Geothermics 105, 102542.
- Keiding, M. et al. 2024: CCS2022–2024 WP1: The Gassum structure. Seismic data and interpretation to mature potential geological storage of CO2. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2024/25, 160 pp.
- Kestin, J., Khalifa, H.E. & Correia, R.J. 1981: Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150°C and the pressure range 0.1–35 MPa. Journal of Physical and Chemical Reference Data 10, 71–88.
- Kharaka, Y.K. & Hanor, J.S. 2003: Deep fluids in the continents: I. Sedimentary Basins. In: Drevor, J.I. (ed.): Treatise on Geochemistry 5, 499–540.
- Kovalevych, V., Peryt, T.M., Beer, W., Geluk, M. & Halas, S. 2002: Geochemistry of early Triassic seawater as indicated by study of the Röt halite in the Netherlands, Germany, and Poland. Chemical Geology 182, 549–563.
- Kristensen, L., Hjuler, M.L., Frykman, P., Olivarius, M., Weibel, R., Nielsen, L.H. & Mathiesen, A. 2016: Pre-drilling assessments of average porosity and permeability in the geothermal reservoirs of the Danish area. Geothermal Energy 4, 6.
- Kumar, R., Campbell, S., Sonnenthal, E. & Cunningham, J. 2020: Effect of brine salinity on the geological sequestration of CO2 in a deep saline carbonate formation. Greenhouse Gas Science Technology 10, 296–312.
- Laier, T. 1989a: Mapping of low enthalpy brines in Denmark for geothermal exploitation. In: Miles, D.L. (ed.): Proceedings of the 6th International Symposium on Water-Rock Interaction, Malvern, England, 3–8 August 1989, 409–412.
- Laier, T. 1989b: Chemical analyses of fluid samples from the deep wells St-1–St-6. DGU Geological Survey of Denmark Internal report 24-1989, 24 pp.
- Laier, T. 2002: Vurdering af udfældningsrisici ved geotermisk produktion fra Margretheholmboringen MAH-1A. Beregning af mætningsindeks for mineraler i saltvand fra Danmarks dybe undergrund. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2002/95, 51 pp.
- Laier, T. 2008: Chemistry of Danish saline formation waters relevant for core fluid experiments. Fluid chemistry data for lab experiments related to CO2 storage in deep aquifers. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2008/48, 10 pp.
- Laier, T. & Nielsen, B.L. 1989: Cementing halite in Triassic sandstone (Tønder Southwest Denmark) as a result of hyperfiltration of brines. Chemical Geology 76, 353–363.
- Linstrom, P.J. & Mallard, W.G. (eds.). 2023: NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD.
- Mao, S. & Duan, Z. 2009: The viscosity of aqueous alkali-chloride solutions up to 623 K, 1,000 bar, and high ionic strength. International Journal of Thermophysics 30, 1510–1523.
- Michelsen, O., Nielsen, L.H., Johannessen, P.N., Andsbjerg, J. & Surlyk, F. 2003: Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark. GEUS Bulletin 1, 145–216.
- Narayanan, P., Khosravi, M., Weibel, R., Meirles, L.T.P., Schovsbo, N.H., Stenby, E.H. & Yan, W. 2023: Long tube flooding tests for investigating salt precipitation induced by CO2 injection. Carbon Capture Science & Technology 9, 100143.
- Nielsen, L.H. 2003: Late Triassic–Jurassic development of the Danish Basin and Fennoscandian Border Zone, Southern Scandinavia. GEUS Bulletin 1, 459–526.
- Nielsen, L.H. & Japsen, P. 1991: Deep wells in Denmark 1935–1990. Lithostratigraphic subdivision. Danmarks Geologiske Undersøgelse Serie A 31, 179 pp.
- Olivarius, M., Sundal, A., Weibel, R., Gregersen, U., Baig, I., Thomsen, T.B., Kristensen, L., Hellevang, H. & Nielsen, L.H. 2019: Provenance and sediment maturity as controls on CO2 mineral sequestration potential of the Gassum Formation in the Skagerrak. Frontiers in Earth Science 7(312), 23 pp.
- Parkhurst, D.L. & Appelo, C.A.J. 2013: Description of input and examples for PHREEQC version 3 – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43, 497 pp. https://pubs.usgs.gov/tm/06/a43/
- Phillips, S., Igbene, A., Fair, J., Ozbek, H. & Tavana, M. 1981: Technical databook for geothermal energy utilization. Technical Report. LBL-12810, Lawrence Berkeley Laboratory, CA.
- Pruess, K. 2009: Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation. Water Resources Research 45, W03403.
- Ringrose, P. 2020: How to store CO2 underground: Insights from early-mover CCS projects. SpringerBriefs in Earth Sciences, Cham, Switzerland.
- Rosberg, J.E. & Erlström, M. 2022: Evaluation of the Lund deep geothermal exploration project in the Romeleåsen Fault Zone, South Sweden: A case study. Geothermal Energy 7, 10
- Schovsbo, N.H., Hedegaard, K., Holmslykke, H.D., Kjøller, C., Kristensen, L., Thomsen, E. & Esbensen, K.H. 2016: Formation water and produced water types in Danish oil and gas fields: implications for enhanced oil recovery by ‘smart’ water. Geological Survey of Denmark and Greenland Bulletin 35, 43–46.
- Schovsbo, N.H., Ponsaing, L., Mathiesen, A., Bojesen-Koefoed, J.A., Kristensen, L., Dybkjær, K., Johannesen, P. & Jakobsen, F. 2020: Regional hydrocarbon potential and thermal reconstruction of the Lower Jurassic to lowermost Cretaceous source rocks in the Danish Central Graben. Bulletin of the Geological Society of Denmark 68, 195–230.
- Stemmerik, L., Surlyk, F., Klitten, K., Rasmussen, S.L. & Schovsbo, N. 2006: Shallow core drilling of the Upper Cretaceous at Stevns Klint, Denmark. Geological Survey of Denmark and Greenland Bulletin 10, 13–16.
- Tang, Y., Li, Z., Wang, R., Cui, M., Wang, X., Lun, Z. & Lu, Y. 2019: Experimental study on the density-driven carbon dioxide convective diffusion in formation water at reservoir conditions. ACS Omega 2019 4/6, 11082–11092.
- Vejbæk, O.V. & Britze, P. 1994: Geologisk kort over Danmark. Geological map of Denmark 1:750 000. Top præ-Zechstein (to vejs løbetid og dybde). Top pre-Zechstein (two-way traveltime and depth). DGU. DGU Kortserie 45. 1–17.
- Vosgerau, H., Mathiesen, A., Andersen, M.S., Boldreel, L.O., Hjuler, M.L., Kamla, E., Kristensen, L., Pedersen, C.B., Pjetursson, B. & Nielsen, L.H. 2016: A WebGIS portal for exploration of deep geothermal energy based on geological and geophysical data. Geological Survey of Denmark and Greenland Bulletin 35, 23–26.
- Wang, S., Cheng, Z., Zhang, Y., Jiang, L., Liu, Y. & Song, Y. 2021: Unstable density-driven convection of CO2 in homogeneous and heterogeneous porous media with implications for deep saline aquifers. Water Resources Research 57, e2020WR028132.
- Weibel, R. & Friis, H. 2004: Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter Sandstone. North German Basin. Sedimentary Geology 169, 129–149.
- Weibel, R., Olivarius, M., Kristensen, L., Friis, H., Hjuler, M.L., Kjøller, C., Mathiesen, A. & Nielsen, L.H. 2017: Predicting permeability of low-enthalpy geothermal reservoirs: a case study from the Upper Triassic – Lower Jurassic Gassum Formation, Norwegian–Danish Basin. Geothermics 65, 135–157.
- Worden, R.H. 2024: Carbon dioxide capture and storage (CCS) in saline aquifers versus depleted gas fields. Geosciences 14(6), 14060146.
- Ziegler, P.A. 1990: Geological Atlas of Western and Central Europe. 2nd ed. Shell International Petroleum Mij. B.V. 239 pp. Distributed by the Geological Society, London.