Miocene vegetation and climate in the eastern North Sea Basin, onshore Denmark, compared to the present

Authors

  • Kasia K Śliwińska Department of Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-5488-8832
  • Thomas Denk Swedish Museum of Natural History, Stockholm, Sweden https://orcid.org/0000-0001-9535-1206
  • Karen Dybkjær Department of Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0002-8420-3379
  • Julie Margrethe Fredborg Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark https://orcid.org/0009-0004-7938-2730
  • Sofie Lindström Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-8278-1055
  • Stefan Piasecki Globe Institute, University of Copenhagen, Copenhagen, Denmark; Department of Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0002-7846-859X
  • Erik Skovbjerg Rasmussen Department of Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-8603-8429

DOI:

https://doi.org/10.34194/geusb.v57.8365

Keywords:

Miocene, palaeoclimate, terrestrial, marine, North Sea

Abstract

Despite often being referred to as a ‘coolhouse climate’, the climate during the Miocene (23.03–5.33 Ma) was overall humid, warm and temperate. It was paced by orbitally driven cooler periods (the Oligocene–Miocene Transition and Mi-events) overprinted by a climatic optimum. Global cooling during the Late Miocene brought more arid conditions with climate seasonality, which varied across western Eurasia. Sedimentary archives from onshore Denmark comprise shallow marine siliciclastic deposits and discrete brown coal layers. Hence, they allow us to infer past climates and environments using both marine and terrestrial fossils. The backbone for Miocene stratigraphy and palaeoclimate reconstruction in the eastern North Sea Basin (present-day Denmark) is the Sønder (Sdr.) Vium sediment core, which penetrates a shallow marine succession and spans an interval from c. 22 to 8 Ma. Here, we present an improved age model for the core. During the Miocene, forested lowlands predominated in the eastern North Sea Basin. Coastal areas included rich riparian landscapes and delta areas of lignite-forming swamp forest. Compilations of existing proxy records (pollen, spores, leaves, plant fragments and the organic biomarkers alkenones and membrane lipids) collectively show that the climate here was warm and moist during the Early and Middle Miocene, while the Late Miocene was characterised by climate cooling and modernisation of the vegetation. The interval preceding the Miocene Climatic Optimum was already warm and moist, and the onset was not characterised by a significant increase in temperature and precipitation. Instead, the palynoflora indicates homogeneous vegetation and only a weak signal of warming shown by a minor increase of, for example, sabaloid palms and Mastixiaceae.

Downloads

Download data is not yet available.

References

Anagnostou, E., John, E.H., Edgar, K.M., Foster, G.L., Ridgwell, A., Inglis, G.N., Pancost, R.D., Lunt, D.J. & Pearson, P.N. 2016: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384. DOI: https://doi.org/10.1038/nature17423

Anthonissen, E.D. 2012: A new Miocene biostratigraphy for the northeastern North Atlantic: an integrated foraminiferal, bolboformid, dinoflagellate and diatom zonation. Newsletters on Stratigraphy 45, 281–307. DOI: https://doi.org/10.1127/0078-0421/2012/0025

Badgley, C., Barry, J.C., Morgan, M.E., Nelson, S.V., Behrensmeyer, A.K., Cerling, T.E. & Pilbeam, D. 2008: Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences 105, 12145–12149. DOI: https://doi.org/10.1073/pnas.0805592105

Böhme, M. 2003: The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 389–401. DOI: https://doi.org/10.1016/S0031-0182(03)00367-5

Böhme, M., Winklhofer, M. & Ilg, A. 2011: Miocene precipitation in Europe: temporal trends and spatial gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 212–218. DOI: https://doi.org/10.1016/j.palaeo.2010.09.028

Bouchal, J.M., Güner, T.H. & Denk, T. 2018: Middle Miocene climate of southwestern Anatolia from multiple botanical proxies. Climate of the Past 14, 1427–1440. DOI: https://doi.org/10.5194/cp-14-1427-2018

Bruch, A.A., Utescher, T. & Mosbrugger, V. 2011: Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 202–211. DOI: https://doi.org/10.1016/j.palaeo.2010.10.002

Cappelen, J. (ed.) 2021: Denmark – DMI historical climate data collection 1768–2020. DMI Report 21-02 Danish Meteorological Institute. https://www.dmi.dk/fileadmin/Rapporter/2021/DMIRep21-02.pdf

Cerling, T.E., Wang, Y. & Quade, J. 1993: Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361, 344–345. DOI: https://doi.org/10.1038/361344a0

Christensen, E.F. 1975: The Søby Flora: Fossil plants from the Middle Miocene delta deposits of the Søby–Fasterholt area, Central Jutland, Denmark. Part I. Danmarks Geologiske Undersøgelse II. Række 103, 1–41. DOI: https://doi.org/10.34194/raekke2.v103.6894

Christensen, E.F. 1976: The Søby Flora: Fossil plants from the Middle Miocene delta deposits of the Søby–Fasterholt area, Central Jutland, Denmark. Part II. Danmarks Geologiske Undersøgelse II Raekke 108, 4–75. DOI: https://doi.org/10.34194/raekke2.v108.6899

Clausen, O.R., Śliwińska, K.K. & Gołędowski, B. 2012: Oligocene climate changes controlling forced regression in the eastern North Sea. Marine and Petroleum Geology 29, 1–14. DOI: https://doi.org/10.1016/j.marpetgeo.2011.10.002

Collins et al. 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Stocker et al. (eds): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Cristini, L., Grosfeld, K., Butzin, M. & Lohmann, G. 2012: Influence of the opening of the Drake Passage on the Cenozoic Antarctic Ice Sheet: a modeling approach. Palaeogeography, Palaeoclimatology, Palaeoecology 339–341, 66–73. DOI: https://doi.org/10.1016/j.palaeo.2012.04.023

Daghlian, C.P. 1981: A review of the fossil record of monocotyledons. Botanical Review 47, 517–555. DOI: https://doi.org/10.1007/BF02860540

Dawson, T.E. 1998: Fog in the California Redwood Forest: ecosystem inputs and use by plants. Oecologia 117, 476–485. DOI: https://doi.org/10.1007/s004420050683

Denk, T. & Bouchal, J.M. 2021a: Dispersed pollen and calyx remains of Diospyros (Ebenaceae) from the middle Miocene ‘Plant beds’ of Søby, Denmark. GFF 143, 292–304. DOI: https://doi.org/10.1080/11035897.2021.1907443

Denk, T. & Bouchal, J.M. 2021b: New Fagaceous pollen taxa from the Miocene Søby flora of Denmark and their biogeographic implications. American Journal of Botany 108, 1500–1524. DOI: https://doi.org/10.1002/ajb2.1716

Denk, T., Grímsson, F., Zetter, R. & Símonarson, L.A. 2011: Late Cainozoic Floras of Iceland. 15 Million Years of Vegetation and Climate History in the Northern North Atlantic. In: Landman, N.H., Harries, PJ (eds): Topics in Geobiology 35, 1–870. DOI: https://doi.org/10.1007/978-94-007-0372-8_1

Denk, T., Güner, H.T. & Bouchal, J.M. 2022: Catalogue of revised and new plant macrofossils from the Aquitanian–Burdigalian of Soma (W Turkey) – biogeographic and palaeoclimatic implications. Review of Palaeobotany and Palynology 296, 104550. DOI: https://doi.org/10.1016/j.revpalbo.2021.104550

Dumont, H.J., Pociecha, A., Zawisza, E., Szeroczyńska, K., Worobiec, E. & Worobiec, G. 2020: Miocene cladocera from Poland. Scientific Reports 10, 12107. DOI: https://doi.org/10.1038/s41598-020-69024-9

Dybkjær, K. 2004: Dinocyst stratigraphy and palynofacies studies used for refining a sequence stratigraphic model – uppermost Oligocene to lower Miocene, Jylland, Denmark. Review of Palaeobotany and Palynology 131, 201–249. DOI: https://doi.org/10.1016/j.revpalbo.2004.03.006

Dybkjær, K. & Piasecki, S. 2010: Neogene dinocyst zonation for the eastern North Sea Basin, Denmark. Review of Palaeobotany and Palynology 161, 1–29. DOI: https://doi.org/10.1016/j.revpalbo.2010.02.005

Dybkjær, K., Rasmussen, E.S., Eidvin, T., Grøsfjeld, K., Riis, F., Piasecki, S. & Śliwińska, K.K. 2021: A new stratigraphic framework for the Miocene – Lower Pliocene deposits offshore Scandinavia: A multiscale approach, Geological Journal 56 1699–1725. DOI: https://doi.org/10.1002/gj.3982

Eidvin, T., Riis, F. & Rasmussen, E.S. 2014: Oligocene to Lower Pliocene deposits of the Norwegian continental shelf, Norwegian Sea, Svalbard, Denmark and their relation to the uplift of Fennoscandia: A synthesis, Marine and Petroleum Geology 56, 184–221. DOI: https://doi.org/10.1016/j.marpetgeo.2014.04.006

Flower, B.P. & Kennett, J.P. 1994: The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108, 537–555. DOI: https://doi.org/10.1016/0031-0182(94)90251-8

Fortelius, M., Eronen, J.T., Kaya, F., Tang, H., Raia, P. & Puolamäki, K. 2014: Evolution of Neogene Mammals in Eurasia: environmental forcing and biotic interactions. Annual Review of Earth and Planetary Sciences 42, 579–604. DOI: https://doi.org/10.1146/annurev-earth-050212-124030

Friis, E.M. 1975: Climatic implications of microcarpological analyses of the Miocene Fasterholt flora, Denmark. Bulletin of the Geological Society of Denmark 24, 179–192.

Friis, E.M. 1977: Leaf whorls of Cupressaceae from the Miocene Fasterholt flora, Denmark. Bulletin of the Geological Society of Denmark 26, 11. DOI: https://doi.org/10.37570/bgsd-1976-26-08

Friis, E.M. 1979: The Damgaard flora: a new middle Miocene flora from Denmark. Bulletin of the Geological Society of Denmark 27, 117–142. DOI: https://doi.org/10.37570/bgsd-1978-27-12

Friis, E.M. 1985: Angiosperm Fruits and Seeds from the Middle Miocene of Jutland (Denmark). Biologiske Skrifter 24, 1–165.

Goldner, A., Herold, N. & Huber, M. 2014: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Climate of the Past 10, 523–536. DOI: https://doi.org/10.5194/cp-10-523-2014

Grambo-Rasmussen, A. 1984: Danmarks brunkulreserver. Rapport Fase 2. Udført for Energiministeriet. Danmarks Geologiske Undersøgelse Serie D 2, 1–67. DOI: https://doi.org/10.34194/seried.v2.7119

Grímsson, F., Denk, T. & Símonarson, L.A. 2007: Middle Miocene floras of Iceland — the early colonization of an island? Review of Palaeobotany and Palynology 144, 181–219. DOI: https://doi.org/10.1016/j.revpalbo.2006.07.003

Guitián, J., Phelps, S., Polissar, P.J., Ausín, B., Eglinton, T.I. & Stoll, H.M. 2019: Midlatitude temperature variations in the Oligocene to early Miocene. Paleoceanography and Paleoclimatology 34, 1328–1343. DOI: https://doi.org/10.1029/2019PA003638

Güner, T.H., Bouchal, J.M., Köse, N., Göktas, F., Mayda, S. & Denk, T. 2017: Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macrofossils. Palaeontographica Abteilung B 296, 113–171. DOI: https://doi.org/10.1127/palb/296/2017/113

Guo, Z.T. et al. 2002: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163. DOI: https://doi.org/10.1038/416159a

Herbert, T.D., Lawrence, K.T., Tzanova, A., Peterson, L.C., Caballero-Gill, R. & Kelly, C.S. 2016: Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience 9, 843–847. DOI: https://doi.org/10.1038/ngeo2813

Herbert, T.D., Rose, R., Dybkjær, K., Rasmussen, E.S. & Śliwińska, K.K. 2020: Bi-Hemispheric warming in the Miocene climatic optimum as seen from the Danish North Sea. Paleoceanography and Paleoclimatology 35, e2020PA003935. DOI: https://doi.org/10.1029/2020PA003935

Hilgen, F.J., Lourens, L.J. & Van Dam, J.A. 2012: The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. & Ogg G.M. (eds): The Geologic Time Scale 2012, Elsevier, 409–440. DOI: https://doi.org/10.1017/CBO9780511536045.022

Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A. & Andersen, N. 2007: Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion, Earth and Planetary Science Letters 261, 534–550. DOI: https://doi.org/10.1016/j.epsl.2007.07.026

Holdgate, G.R. & Clarke, J.D.A. 2000: A review of tertiary brown coal deposits in Australia: their depositional factors and Eustatic correlations. AAPG Bulletin 84, 1129–1151. DOI: https://doi.org/10.1306/A9673C5C-1738-11D7-8645000102C1865D

Hübscher, C., Betzler, C. & Reiche, S. 2016: Seismo-stratigraphic evidences for deep base level control on middle to late Pleistocene drift evolution and mass wasting along southern Levant continental slope (Eastern Mediterranean). Marine and Petroleum Geology 77, 526–534. DOI: https://doi.org/10.1016/j.marpetgeo.2016.07.008

Hutchinson, D.K., Coxall, H.K., O’Regan, M., Nilsson, J., Caballero, R. & de Boer, A.M. 2019: Arctic closure as a trigger for Atlantic overturning at the Eocene–Oligocene Transition. Nature Communications 10, 3797. DOI: https://doi.org/10.1038/s41467-019-11828-z

Jarsve, E.M., Eidvin, T., Nystuen, J.P., Faleide, J.I., Gabrielsen, R.H. & Thyberg, B.I. 2015: The Oligocene succession in the eastern North Sea: basin development and depositional systems. Geological Magazine 152, 668–693. DOI: https://doi.org/10.1017/S0016756814000570

John, C.M., Karner, G.D., Browning, E., Leckie, R.M., Mateo, Z., Carson, B. & Lowery, C. 2011: Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin. Earth and Planetary Science Letters 304, 455–467. DOI: https://doi.org/10.1016/j.epsl.2011.02.013

Kalkreuth, W., Kotis, T., Papanicolaou, C. & Kokkinakis, P. 1991: The geology and coal petrology of a Miocene lignite profile at Meliadi Mine, Katerini, Greece. International Journal of Coal Geology 17, 51–67. DOI: https://doi.org/10.1016/0166-5162(91)90004-3

Kasbohm, J. & Schoene, B. 2018: Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Science Advances 4, eaat8223. DOI: https://doi.org/10.1126/sciadv.aat8223

King, C., Gale, A.S. & Barry, T.L. 2016: A revised correlation of Tertiary rocks in the British Isles and adjacent areas of NW Europe. Geological Society Special Report 27, 583 pp. DOI: https://doi.org/10.1144/SR27

Knorr, G., Butzin, M., Micheels, A. & Lohmann, G. 2011: A warm Miocene climate at low atmospheric CO2 levels. Geophysical Research Letters 38, L20701. DOI: https://doi.org/10.1029/2011GL048873

Koch, B.E. 1989: Geology of the Søby-Fasterholt area: a paleontological and geological investigation on the Miocene browncoal bearing sequence of the Søby-Fasterholt area, Central Jutland, Denmark. Danmarks Geologiske Undersøgelse Serie A 22, 170 pp. DOI: https://doi.org/10.34194/seriea.v22.7042

Koch, B.E. & Christensen, E.F. 1979: Introduction to the symposium ‘The continental Miocene of Central Jutland (Denmark)’: geology, brown coal facies, stratigraphy, paleontology. Aarhus University, 11–16 June 1979, Aarhus. 97 pp.

Koch, B.E. & Friedrich, W.L. 1970: Geologisch-paläontologische Untersuchung der miozänen Braunkohlen bei Fasterholt in Jutland, Dänemark. Bulletin of the Geological Society of Denmark 20, 169–191.

Koch, B.E. & Friedrich, W.L. 1971: Früchte und Samen von Spirematospermum aus der miozänen Fasterholt-Flora in Dänemark. Palaeontographica Abteilung B 136, 1–46.

Koch, B.E., Friedrich, W.L., Christensen, E.F. & Friis, E.M. 1973: Den miocæne brunkulsflora og dens geologiske miljø i Søby–Fasterholt området sydøst for Herning. 57 pp. Reitzel.

Kolcon, I. & Sachsenhofer, R.F. 1999: Petrography, palynology and depositional environments of the early Miocene Oberdorf lignite seam (Styrian Basin, Austria). International Journal of Coal Geology 41, 275–308. DOI: https://doi.org/10.1016/S0166-5162(99)00023-3

Kovar-Eder, J., Kvaček, Z. & Meller, B. 2001: Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic), and Wackersdorf (Germany). Review of Palaeobotany and Palynology 114, 83–125. DOI: https://doi.org/10.1016/S0034-6667(00)00070-1

Kvaček, Z., Velitzelos, D. & Velitzelos, E. 2002: Late Miocene Flora of Vegora Macedonia N. Greece. University of Athens, Greece. 175 pp.

Larsson, L.M., Dybkjær, K., Rasmussen, E.S., Piasecki, S., Utescher, T. & Vajda, V. 2011: Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 309, 161–175. DOI: https://doi.org/10.1016/j.palaeo.2011.05.003

Larsson, L.M., Vajda, V. & Dybkjær, K. 2010: Vegetation and climate in the latest Oligocene – earliest Miocene in Jylland, Denmark. Review of Palaeobotany and Palynology 159, 166–176. DOI: https://doi.org/10.1016/j.revpalbo.2009.12.002

Larsson, L.M., Vajda, V. & Rasmussen, E.S. 2006: Early Miocene pollen and spores from western Jylland, Denmark – environmental and climatic implications. GFF 128, 261–272. DOI: https://doi.org/10.1080/11035890601283261

Laursen, G.V. & Kristoffersen, F.N. 1999: Detailed foraminiferal biostratigraphy of Miocene formations in Denmark. Contributions to Tertiary and Quaternary Geology 36, 73–107.

Lear, C.H., Rosenthal, Y., Coxall, H.K. & Wilson, P.A. 2004: Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography and Paleoclimatology 19, 4015. DOI: https://doi.org/10.1029/2004PA001039

Levy, R. et al. 2016: Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences 113, 3453–3458.

Lidmar-Bergström, K., Ollier, C.D. & Sulebak, J.R. 2000: Landforms and uplift history of southern Norway. Global and Planetary Change 24, 211–231. DOI: https://doi.org/10.1016/S0921-8181(00)00009-6

Liu, Z., He, Y., Jiang, Y., Wang, H., Liu, W., Bohaty, S.M. & Wilson, P.A. 2018: Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nature Geoscience 11, 656–660. DOI: https://doi.org/10.1038/s41561-018-0182-9

Mai, D.H. 1995: Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. 691 pp. Gustav Fischer Verlag.

Mathiesen, F.J. 1965: Palaeobotanical investigations into some cormophytic macrofossils from the Neogene Tertiary lignites of Central Jutland. Part I: Introduction and Pteridophytes. Biologiske Skrifter 14, 1–46. Det Kongelige Danske Videnskabernes Selskab.

Mathiesen, F.J. 1970: Palaeobotanical investigations into some cormophytic macrofossils from the Neogene Tertiary lignites of Central Jutland. Part II. Gymnosperms. Biologiske Skrifter 17, 1–69. Det Kongelige Danske Videnskabernes Selskab.

Mathiesen, F.J. 1975: Palaeobotanical investigations into some cormophytic macrofossils from the Neogene Tertiary lignites of Central Jutland. Part III. Angiosperms. Biologiske Skrifter 20, 1–59. Det Kongelige Danske Videnskabernes Selskab.

McCoy, J., Barrass-Barker, T., Hocking, E.P., O’Keefe, J.M.K., Riding, J.B. & Pound, M.J. 2022: Middle Miocene (Serravallian) wetland development on the northwest edge of Europe based on palynological analysis of the uppermost Brassington Formation of Derbyshire, United Kingdom. Palaeogeography, Palaeoclimatology, Palaeoecology 603, 111180. DOI: https://doi.org/10.1016/j.palaeo.2022.111180

Miller, K.G., Browning, J.V., Schmelz, W.J., Kopp, R.E., Mountain, G.S. & Wright, J.D. 2020: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances 6, eaaz1346. DOI: https://doi.org/10.1126/sciadv.aaz1346

Miller, K.G. & Mountain, G.S. 1996: Drilling and dating New Jersey Oligocene-Miocene sequences: ice volume, Global Sea level, and Exxon records. Science 271, 1092–1095. DOI: https://doi.org/10.1126/science.271.5252.1092

Miller, K.G., Wright, J.D. & Fairbanks, R.G. 1991: Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research: Solid Earth 96, 6829–6848. DOI: https://doi.org/10.1029/90JB02015

Miller, K.G. et al. 2005: The phanerozoic record of global sea-level change. Science 310, 1293–1298. DOI: https://doi.org/10.1126/science.1116412

Møller, L.K., Rasmussen, E.S. & Clausen, O.R. 2009: Clinoform migration patterns of a Late Miocene delta complex in the Danish Central Graben; implications for relative sea-level changes. Basin Research 21, 704–720. DOI: https://doi.org/10.1111/j.1365-2117.2009.00413.x

Mörs, T. 2002: Biostratigraphy and paleoecology of continental Tertiary vertebrate faunas in the Lower Rhine Embayment (NW-Germany). Netherlands Journal of Geosciences 81, 177–183. DOI: https://doi.org/10.1017/S0016774600022411

Mosbrugger, V., Utescher, T. & Dilcher, D.L. 2005: Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences 102, 14964–14969. DOI: https://doi.org/10.1073/pnas.0505267102

Nielsen, O.B., Rasmussen, E.S. & Thyberg, B.I. 2015: Distribution of clay minerals in the Northern North Sea Basin during the Paleogene and Neogene: a result of source-area geology and sorting processes. Journal of Sedimentary Research 85, 562–581. DOI: https://doi.org/10.2110/jsr.2015.40

Olivarius, M., Friis, H., Kokfelt, T.F. & Wilson, J.D. 2015: Proterozoic basement and Palaeozoic sediments in the Ringkøbing–Fyn High characterized by zircon U–Pb ages and heavy minerals from Danish onshore wells. Bulletin of the Geological Society of Denmark 63, 29–44. DOI: https://doi.org/10.37570/bgsd-2015-63-04

Oskay, R.G., Bechtel, A. & Karayiğit, A.İ. 2019: Mineralogy, petrography and organic geochemistry of Miocene coal seams in the Kınık coalfield (Soma Basin-Western Turkey): insights into depositional environment and palaeovegetation. International Journal of Coal Geology 210, 103205. DOI: https://doi.org/10.1016/j.coal.2019.05.012

Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K. & Wade, B.S. 2006: The heartbeat of the Oligocene climate system. Science 314, 1894–1898. DOI: https://doi.org/10.1126/science.1133822

Pearson, P.N., Foster, G.L. & Wade, B.S. 2009: Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110–1113. DOI: https://doi.org/10.1038/nature08447

Petersen, H.I., Fyhn, M.B.W., Nytoft, H.P., Dybkjær, K. & Nielsen, L.H. 2022: Miocene coals in the Hanoi Trough, onshore northern Vietnam: depositional environment, vegetation, maturity, and source rock quality. International Journal of Coal Geology 253, 103953. DOI: https://doi.org/10.1016/j.coal.2022.103953

Piasecki, S. 1980: Dinoflagellate cyst stratigraphy of the Miocene Hodde and Gram Formations, Denmark. Bulletin of the Geological Society of Denmark 29, 53–76. DOI: https://doi.org/10.37570/bgsd-1980-29-03

Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. & Hunter, S.J. 2011: A Tortonian (Late Miocene, 11.61–7.25 Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 29–45. DOI: https://doi.org/10.1016/j.palaeo.2010.11.029

Pound, M.J. & McCoy, J. 2021: Palaeoclimate reconstruction and age assessment of the Miocene flora from the Trwyn y Parc solution pipe complex of Anglesey, Wales, UK. Palynology 45, 697–703. DOI: https://doi.org/10.1080/01916122.2021.1916636

Pound, M.J., Otaño, N.B.N., Romero, I.C., Lim, M., Riding, J.B. & O’Keefe, J.M.K. 2022: The fungal ecology of the Brassington Formation (Middle Miocene) of Derbyshire, United Kingdom, and a new method for palaeoclimate reconstruction. Frontiers in Ecology and Evolution 10, 1–18. DOI: https://doi.org/10.3389/fevo.2022.947623

Pound, M.J. & Riding, J.B. 2016: Palaeoenvironment, palaeoclimate and age of the Brassington Formation (Miocene) of Derbyshire, UK. Journal of the Geological Society 173, 306–319. DOI: https://doi.org/10.1144/jgs2015-050

Pound, M.J., Riding, J.B., Donders, T.H. & Daskova, J. 2012: The palynostratigraphy of the Brassington Formation (Upper Miocene) of the southern Pennines, central England. Palynology 36, 26–37. DOI: https://doi.org/10.1080/01916122.2011.643066

Rae, J.W.B., Zhang, Y.G., Liu, X., Foster, G.L., Stoll, H.M. & Whiteford, R.D.M. 2021: Atmospheric CO2 over the past 66 million years from Marine archives. Annual Review of Earth and Planetary Sciences 49, 609–641. DOI: https://doi.org/10.1146/annurev-earth-082420-063026

Rasmussen, E.S. 1996: Sequence stratigraphic subdivison of the Oligocene and Miocene succession in South Jutland. Bulletin of the Geological Society of Denmark 43, 143–155. DOI: https://doi.org/10.37570/bgsd-1996-43-14

Rasmussen, E.S. 1997: Sedimentology and sequence stratigraphy of the uppermost upper Oligocene – Miocene fluvio-deltaic system in the eastern North Sea BasIn: the influence of tectonism, eustacy and climate. Unpublished doctoral thesis. University of Copenhagen.

Rasmussen, E.S. 2004: The interplay between true eustatic sea-level changes, tectonics, and climatic changes: What is the dominating factor in sequence formation of the Upper Oligocene-Miocene succession in the eastern North Sea Basin, Denmark? Global and Planetary Change 41, 15–30. DOI: https://doi.org/10.1016/j.gloplacha.2003.08.004

Rasmussen, E.S. 2009a: Detailed mapping of marine erosional surfaces and the geometry of clinoforms on seismic data: a tool to identify the thickest reservoir sand. Basin Research 21, 721–737. DOI: https://doi.org/10.1111/j.1365-2117.2009.00422.x

Rasmussen, E.S. 2009b: Neogene inversion of the Central Graben and Ringkøbing-Fyn High, Denmark. Tectonophysics 465, 84–97. DOI: https://doi.org/10.1016/j.tecto.2008.10.025

Rasmussen, E.S. & Bruun-Petersen, J. 2010: Distribution and grain size of sand in the Miocene wave-dominated Billund delta, Denmark. Geological Survey of Denmark and Greenland Bulletin 20, 23–26. DOI: https://doi.org/10.34194/geusb.v20.4891

Rasmussen, E.S., Dybkjær, K. & Piasecki, S. 2010: Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark. Geological Survey of Denmark and Greenland Bulletin 22, 92 pp. DOI: https://doi.org/10.34194/geusb.v22.4733

Rasmussen, E.S., Heilmann-Clausen, C., Waagstein, R. & Eidvin, T. 2008: The Tertiary of Norden. International Union of Geological Sciences 31, 66–72. DOI: https://doi.org/10.18814/epiiugs/2008/v31i1/010

Rasmussen, E.S. & Larsen, O.H. 1989: Mineralogi og geokemi af det Øvre Miocæne Gram ler. Danmarks Geologiske Undersøgelse Serie D 7, 1–81. DOI: https://doi.org/10.34194/seried.v7.7124

Rasmussen, E.S., Vejbæk, O.V., Bidstrup, T., Piasecki, S. & Dybkjær, K. 2005: Late Cenozoic depositional history of the Danish North Sea BasIn: implications for the petroleum systems in the Kraka, Halfdan, Siri and Nini fields. Geological Society, London, Petroleum Geology Conference Series 6, 1347–1358. DOI: https://doi.org/10.1144/0061347

Rasmussen, L.B. 1966: Biostratigraphical studies on the marine younger Miocene of Denmark. Based on the molluscan faunas. Danmarks Geologiske Undersøgelse II. Række 88, 358 pp. DOI: https://doi.org/10.34194/raekke2.v88.6879

Rasmussen, L.B. 1968: Molluscan Faunas and biostratigraphy of the Marine younger Miocene formations in Denmark. Part II: palaeontology. Danmarks Geologiske Undersøgelse II. Række 92, 265 pp. DOI: https://doi.org/10.34194/raekke2.v92.6883

Rohling, E.J., Yu, J., Heslop, D., Foster, G.L., Opdyke, B. & Roberts, A.P. 2021: Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years. Science Advances 7, eabf5326. DOI: https://doi.org/10.1126/sciadv.abf5326

Sangiorgi, F., Quaijtaal, W., Donders, T.H., Schouten, S. & Louwye, S. 2021: Middle Miocene temperature and productivity evolution at a Northeast Atlantic Shelf Site (IODP U1318, Porcupine Basin): global and regional changes. Paleoceanography and Paleoclimatology 36, e2020PA004059. DOI: https://doi.org/10.1029/2020PA004059

Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. 2016: Why the right climate target was agreed in Paris. Nature Climate Change 6(7), 649–653. DOI: https://doi.org/10.1038/nclimate3013

Schuster, M., Duringer, P., Ghienne, J.-F., Vignaud, P., Mackaye, H.T., Likius, A. & Brunet, M. 2006: The age of the Sahara Desert. Science 311, 821. DOI: https://doi.org/10.1126/science.1120161

Sdr. Resen. 2023: http://www.fjendsnet.dk/00101/

Shackleton, N.J. & Kennett, J.P. 1975: Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. Initial Report of Deep Sea Drilling Project 29, 743. DOI: https://doi.org/10.2973/dsdp.proc.29.117.1975

Singh, A., Misra, B.K., Singh, B.D. & Navale, G.K.B. 1992: The Neyveli lignite deposits (Cauvery basin), India: organic composition, age and depositional pattern. International Journal of Coal Geology 21, 45–97. DOI: https://doi.org/10.1016/0166-5162(92)90035-U

Śliwińska, K.K. 2019: Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well. Journal of Micropalaeontology 38, 143–176. DOI: https://doi.org/10.5194/jm-38-143-2019

Śliwińska, K.K., Clausen, O.R. & Heilmann-Clausen, C. 2010: A mid-Oligocene cooling (Oi-2b) reflected in the dinoflagellate record and in depositional sequence architecture. An integrated study from the eastern North Sea Basin. Marine and Petroleum Geology 27, 1424–1430. DOI: https://doi.org/10.1016/j.marpetgeo.2010.03.008

Śliwińska, K.K., Dybkjær, K., Schoon, P.L., Beyer, C., King, C., Schouten, S. & Nielsen, O.B. 2014: Paleoclimatic and paleoenvironmental records of the Oligocene–Miocene transition, central Jylland, Denmark. Marine Geology 350, 1–15. DOI: https://doi.org/10.1016/j.margeo.2013.12.014

Śliwińska, K.K. & Heilmann-Clausen, C. 2011: Early Oligocene cooling reflected by the dinoflagellate cyst Svalbardella cooksoniae. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 138–149. DOI: https://doi.org/10.1016/j.palaeo.2011.02.027

Sorgenfrei, T. 1958: Molluscan assemblages from the Marine middle Miocene of South Jutland and their environments. Vol. I. Danmarks Geologiske Undersøgelse II. Række 79, 1–355. DOI: https://doi.org/10.34194/raekke2.v79.6868

Stickley, C.E. et al. 2004: Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography and Paleoclimatology 19, PA4027. DOI: https://doi.org/10.1029/2004PA001022

Super, J.R., Thomas, E., Pagani, M., Huber, M., O’Brien, C. & Hull, P.M. 2018: North Atlantic temperature and pCO2 coupling in the early–middle Miocene. Geology 46, 519–522. DOI: https://doi.org/10.1130/G40228.1

Super, J.R., Thomas, E., Pagani, M., Huber, M., O’Brien, C. L. & Hull, P.M. 2020: Miocene evolution of North Atlantic Sea surface temperature. Paleoceanography and Paleoclimatology 35, e2019PA003748. DOI: https://doi.org/10.1029/2019PA003748

The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium. 2023: toward a Cenozoic history of atmospheric CO2. Science 382, eadi5177.

Thiede, J., Jessen, C., Knutz, P.C., Kuijpers, A., Mikkelsen, N., Nørgaard-Pedersen, N. & Spielhagen, R.F. 2010: millions of years of Greenland Ice Sheet history recorded in ocean sediments. Polarforschung 80, 141–159.

Uhl, D. & Herrmann, M. 2010: Palaeoclimate estimates for the Late Oligocene taphoflora of Enspel (Westerwald, West Germany) based on palaeobotanical proxies. Palaeobiodiversity and Palaeoenvironments 90, 39–47. DOI: https://doi.org/10.1007/s12549-009-0018-0

Uhl, D., Klotz, S., Traiser, C., Thiel, C., Utescher, T., Kowalski, E. & Dilcher, D.L. 2007: Cenozoic paleotemperatures and leaf physiognomy – a European perspective. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 24–31. DOI: https://doi.org/10.1016/j.palaeo.2006.11.005

Utescher, T., Ashraf, A.R., Kern, A.K. & Mosbrugger, V. 2021: Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat-forming vegetation and continental climate variability. Geological Journal 56, 768–785. DOI: https://doi.org/10.1002/gj.3801

Utescher, T., Böhme, M. & Mosbrugger, V. 2011: The Neogene of Eurasia: spatial gradients and temporal trends – the second synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 196–201. DOI: https://doi.org/10.1016/j.palaeo.2011.03.012

Utescher, T., Bondarenko, O.V. & Mosbrugger, V. 2015: The Cenozoic cooling – continental signals from the Atlantic and Pacific side of Eurasia. Earth and Planetary Science Letters 415, 121–133. DOI: https://doi.org/10.1016/j.epsl.2015.01.019

Utescher, T., Gebka, M., Mosbrugger, V., Schilling, H.-D. & Ashraf, A.R. 1997: Regional palaeontological-meteorological palaeoclimate reconstruction of the Neogene Lower Rhine Embayment. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO 58, 263–271.

Utescher, T., Mosbrugger, V. & Ashraf, A.R. 2000: Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios 15, 430–449. DOI: https://doi.org/10.1669/0883-1351(2000)015<0430:TCEING>2.0.CO;2

Utescher, T., Mosbrugger, V. & Ashraf, A.R. 2002: Facies and paleogeography of the Tertiary of the Lower Rhine Basin – sedimentary versus climatic control. Netherlands Journal of Geosciences 81, 185–191. DOI: https://doi.org/10.1017/S0016774600022423

Utescher, T. et al. 2014: The coexistence approach – theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 58–73. DOI: https://doi.org/10.1016/j.palaeo.2014.05.031

Wade, B.S. & Pälike, H. 2004: Oligocene climate dynamics. Paleoceanography and Paleoclimatology 19, 1–16. DOI: https://doi.org/10.1029/2004PA001042

Wagner, P. & Koch, B.E. 1974: Fossil roots of Sequoia type from two localities of the Miocene delta deposits. Bulletin of the Geological Society of Denmark 23, 134–158.

Weibel, R. 1996: Petrified wood from an unconsolidated sediment, Voervadsbro, Denmark. Sedimentary Geology 101, 31–41. DOI: https://doi.org/10.1016/0037-0738(95)00013-5

Westerhold, T. et al. 2020: An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387. DOI: https://doi.org/10.1126/science.aba6853

Widera, M. 2016: An overview of lithotype associations of Miocene lignite seams exploited in Poland. Geologos 22, 213–225. DOI: https://doi.org/10.1515/logos-2016-0022

Worobiec, E., Widera, M., Worobiec, G. & Kurdziel, B. 2021: Middle Miocene palynoflora from the Adamów lignite deposit, central Poland. Palynology 45, 59–71. DOI: https://doi.org/10.1080/01916122.2019.1697388

Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693. DOI: https://doi.org/10.1126/science.1059412

Zetter, R. 1997: Palynological investigations from the early Miocene lignite opencast mine Oberdorf (N Voitsberg, Styria, Austria). Jahrbuch der Geologischen Bundesanstalt Wien 140, 461–468.

Ziegler, P.A. 1990: Geological atlas of Western and Central Europe, 2nd edition, 239 pp. The Hague: Shell Internationale Petroleum Maatschappij, B.V.

Two fossil leaves

Published

25-09-2024

How to Cite

Śliwińska, K. K., Denk, T., Dybkjær, K., Fredborg, J. M., Lindström, S., Piasecki, S., & Rasmussen, E. S. (2024). Miocene vegetation and climate in the eastern North Sea Basin, onshore Denmark, compared to the present. GEUS Bulletin, 57. https://doi.org/10.34194/geusb.v57.8365

Issue

Section

REVIEW ARTICLE