Beach-ridge formation as a possible indicator for an open Limfjord – North Sea connection

Authors

DOI:

https://doi.org/10.34194/geusb.v57.8358

Keywords:

Optically stimulated luminescence, Raised beach ridges, sea-level changes, Late Holocene, Limfjord, Sediment dating

Abstract

Raised beach ridges are prograded sequences of wave-built deposits that may provide valuable information about past relative sea-level changes, climate change and coastal evolution. In the Limfjord in northern Denmark, the Early and Middle Holocene sea-level changes are well-constrained. However, our understanding of Late Holocene sea-level fluctuations is limited, and the exact period when the coastal barrier between the Limfjord and the North Sea formed remains uncertain. In this study, we use optically stimulated luminescence (OSL) dating to determine the age of raised beach ridges at Gjellerodde in the western part of the Limfjord. The OSL ages presented here indicate that the beach ridges formed during three periods at 3.3–2.7, 1.4–1.0, 0.2–0.1 ka. In addition our data suggest a c. 0.2 mm/yr relative sea-level fall during the Late Holocene. The three distinct periods of beach-ridge formation coincide with periods when the Limfjord was open towards the North Sea as documented in historical records and marine records. This suggests that OSL dating of beach ridges can be used as a potential indicator for determining when the connection between the Limfjord and the North Sea was open in the Late Holocene.

Downloads

Download data is not yet available.

References

Aitken, M.J. 1985: Thermoluminescence dating. London: Academic Press.

Ballarini, M., Wallinga, J., Wintle, A.G. & Bos, A.J.J. 2007: A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42, 360–369. https://doi.org/10.1016/j.radmeas.2006.12.016

Bennike, O., Nørgaard-Pedersen, N., Jensen, J., Andresen, K. & Seidenkrantz, M.-S. 2019: Development of the western Limfjord, Denmark, after the last deglaciation: a review with new data. Bulletin of the Geological Society of Denmark 67, 53–73. https://doi.org/10.37570/bgsd-2019-67-04

Bøtter-Jensen, L., Thomsen, K.J. & Jain, M. 2010: Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253–257. https://doi.org/10.1016/j.radmeas.2009.11.030

Branner, W. 1839: Sognekort, Tørring Sogn (Skodborg Herred) 1839. Historiske kort pa nettet. Nørresundby: Geodatastyrelsen.

Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C. & Sohbati, R. 2012: A robust feldspar luminescence dating method for middle and late pleistocene sediments. Boreas 419, 435–451. https://doi.org/10.1111/j.1502-3885.2012.00248.x

Clemmensen, L., Murray, A. & Nielsen, L. 2012: Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia. Quaternary Science Reviews 40, 54–63. https://doi.org/10.1016/j.quascirev.2012.03.001

Duller, G.A.T. 2008: Single-grain optical dating of quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589–612. https://doi.org/10.1111/j.1502-3885.2008.00051.x

Eriksen, P., Egeberg, T., Olesen, L. & Rostholm, H. 2009: Vikinger i vest. Vikingetiden i Jylland. 70. Aarhus: Jysk Arkæologisk Selskabs Skrifter.

Goodwin, I.D., Stables, M.A. & Olley, J.M. 2006: Wave climate, sand budget and shoreline alignment evolution of the iluka-woody bay sand barrier, northern New South Wales, Australia, since 3000 yr bp. Marine Geology 226(1), 127–144. https://doi.org/10.1016/j.margeo.2005.09.013

Gram-Jensen, I. 1991: Stormfloder. Danish Meteorological Report, 91-1, 121 p.

Guérin, G., Mercier, N. & Adamiec, G. 2011: Dose-rate conversion factors: update. Ancient TL 29, 5–8.

Guérin, G., Mercier, N., Nathan, R., Adamiec, G. & Lefrais, Y. 2012: On the use of the infinite matrix assumption and associated concepts: a critical review. Radiation Measurements 47(9), 778–785. https://doi.org/10.1016/j.radmeas.2012.04.004

Guérin, G. et al. 2017: Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: introducing the average dose model. Quaternary Geochronology 41, 163–173. https://doi.org/10.1016/j.quageo.2017.04.002

Hansen, J., Aagaard, T. & Binderup, M. 2012: Absolute sea levels and isostatic changes of the eastern north sea to central Baltic region during the last 900 years. Boreas 41, 180–208. https://doi.org/10.1111/j.1502-3885.2011.00229.x

Hansen, V., Murray, A.S., Buylaert, J.-P., Yeo, E.Y. & Thomsen, K.J. 2015: A new irradiated quartz for beta source calibration. Radiation Measurements 81, 123–127. https://doi.org/10.1016/j.radmeas.2015.02.017

Hede, M.U., Sander, L., Clemmensen, L.B., Kroon, A., Pejrup, M. & Nielsen, L. 2015: Changes in holocene relative sea-level and coastal morphology: a study of a raised beach ridge system on Samsø, southwest Scandinavia. The Holocene 25(9), 1402–1414. https://doi.org/10.1177/0959683615585834

Jessen, A. 1910: Stenalderhavets udbredelse i det nordlige jylland. Danmarks Geologiske Undersøgelse II. Række, 35, 112 pp. https://doi.org/10.34194/raekke2.v35.6821

Jessen, A. 1936: Vendsyssels Geologi. Danmarks Geologiske Undersøgelse V. Række 2, 195 p. https://doi.org/10.34194/raekke5.v2.7010

Jessen, C., Christensen, C. & Nielsen, B.H. 2019: Postglacial relative sea level rise in the Limfjord region, northern Jutland, Denmark. Boreas 48(1), 119–130. https://doi.org/10.1111/bor.12350

Kristensen, P., Heier-Nielsen, S. & Hylleberg, J. 1995: Late-Holocene salinity fluctuations in Bjømsholm bay, Limfjorden, Denmark, as deduced from micro- and macrofossil analysis. The Holocene 5(3), 313–322. https://doi.org/10.1177/095968369500500306

Kristiansen, S.M., Ljungberg, T.E., Christiansen, T.T., Dalsgaard, K., Haue, N., Greve, M.H. & Nielsen, B.H. 2021: Meadow, marsh and lagoon: Late Holocene coastal changes and human-environment interactions in northern Denmark. Boreas 50(1), 279–293. https://doi.org/10.1111/bor.12487

Lewis, J.P. et al. 2013: Environmental change in the Limfjord, Denmark (ca 7500–1500 cal yrs bp): a multiproxy study. Quaternary Science Reviews 78, 126–140. https://doi.org/10.1016/j.quascirev.2013.05.020

Medialdea, A., Thomsen, K.J., Murray, A.S. & Benito, G. 2014: Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology 22, 11–24. https://doi.org/10.1016/j.quageo.2014.01.004

Mertz, E.L. 1924: Oversigt over de sen- og postglaciale niveauforandringer i danmark. Danmarks Geologiske Undersøgelse II. Række 41, 1–49. https://doi.org/10.34194/raekke2.v41.6827

Murray, A.S. & Wintle, A.G. 2000: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X

Murray, A.S. & Wintle, A.G. 2003: The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377–381. https://doi.org/10.1016/S1350-4487(03)00053-2

Murray, A.S., Marten, R., Johnston, A. & Martin, P. 1987: Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263–288. https://doi.org/10.1007/BF02037443

Murray, A.S., Helsted, L.M., Autzen, M., Jain, M. & Buylaert, J.-P. 2018: Measurement of natural radioactivity: calibration and performance of a high- resolution gamma spectrometry facility. Radiation Measurements 120, 215–220. https://doi.org/10.1016/j.radmeas.2018.04.006

Murray, A.S., Buylaert, J.-P., Guérin, G., Qin, J., Singhvi, A.K., Smedley, R.S., & Thomsen, K.J. 2021: Optically stimulated luminescence dating using quartz sand. Nature Primer 1, 72. https://doi.org/10.1038/s43586-021-00068-5

Nielsen, L. & Clemmensen, L.B. 2009: Sea-level markers identified in ground penetrating radar data collected across a modern beach ridge system in a microtidal regime. Terra Nova 21(6), 474–479. https://doi.org/10.1111/j.1365-3121.2009.00904.x

Penney, D.N. 1985: The Holocene marine sequence in the løkken area of Vendsys-Sel, Denmark. EG Quaternary Science Journal 35(1), 79–88. https://doi.org/10.3285/eg.35.1.12

Petersen, K.S. 1979: Den holocæne marine transgression og molluskfaunaen i hanherred – belyst ud fra en boring ved vust. Arsskrift: Dansk Geologisk Forening, 15–17.

Prescott, J.R. & Hutton, J.T. 1994: Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23, 497–500. https://doi.org/10.1016/1350-4487(94)90086-8

Sander, L., Hede, M.U., Fruergaard, M., Nielsen, L., Clemmensen, L.B., Kroon, A., Johannessen, P.N., Nielsen, L.H. & Pejrup, M. 2016: Coastal lagoons and beach ridges as complementary sedimentary archives for the reconstruction of Holocene relative sea-level changes. Terra Nova 28(1), 43–49. https://doi.org/10.1111/ter.12187

Shukla, P. et al. 2022: Summary for policymakers. In Shukla, P. et al. (eds): Climate change 2022: mitigation of climate change. Contribution of working group iii to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 112 pp.

Skovborg, H. 1957: Vestersøs klægbanker mellem lemvig og harboøre er nu under plov. Hedeselskabets Tidsskrift 78, 4.

Tamura, T., Murakami, F., Nanayama, F., Watanabe, K. & Saito, Y. 2008: Ground-penetrating radar profiles of Holocene raised-beach deposits in the Kujukuri strand plain, Pacific coast of eastern Japan. Marine Geology 248(1), 11–27. https://doi.org/10.1016/j.margeo.2007.10.002

Vandenberghe, D., De Corte, F., Buylaert, J.-P. & Kučera, J. 2008: On the internal radioactivity in quartz. Radiation Measurements 43(2–6), 771–775. https://doi.org/10.1016/j.radmeas.2008.01.016

Map and satellite photo over Jylland, Denmark

Published

22-01-2024

How to Cite

Freiesleben, T., Rokkedahl Berntsen, L., Blæsbjerg, M., Høffer, E., Rasmussen, C., & Krog Larsen, N. (2024). Beach-ridge formation as a possible indicator for an open Limfjord – North Sea connection. GEUS Bulletin, 57. https://doi.org/10.34194/geusb.v57.8358

Issue

Section

RESEARCH ARTICLE