Beach-ridge formation as a possible indicator for an open Limfjord – North Sea connection
DOI:
https://doi.org/10.34194/geusb.v57.8358Keywords:
Optically stimulated luminescence, Raised beach ridges, sea-level changes, Late Holocene, Limfjord, Sediment datingAbstract
Raised beach ridges are prograded sequences of wave-built deposits that may provide valuable information about past relative sea-level changes, climate change and coastal evolution. In the Limfjord in northern Denmark, the Early and Middle Holocene sea-level changes are well-constrained. However, our understanding of Late Holocene sea-level fluctuations is limited, and the exact period when the coastal barrier between the Limfjord and the North Sea formed remains uncertain. In this study, we use optically stimulated luminescence (OSL) dating to determine the age of raised beach ridges at Gjellerodde in the western part of the Limfjord. The OSL ages presented here indicate that the beach ridges formed during three periods at 3.3–2.7, 1.4–1.0, 0.2–0.1 ka. In addition our data suggest a c. 0.2 mm/yr relative sea-level fall during the Late Holocene. The three distinct periods of beach-ridge formation coincide with periods when the Limfjord was open towards the North Sea as documented in historical records and marine records. This suggests that OSL dating of beach ridges can be used as a potential indicator for determining when the connection between the Limfjord and the North Sea was open in the Late Holocene.
Downloads
References
Aitken, M.J. 1985: Thermoluminescence dating. London: Academic Press.
Ballarini, M., Wallinga, J., Wintle, A.G. & Bos, A.J.J. 2007: A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42, 360–369. https://doi.org/10.1016/j.radmeas.2006.12.016
Bennike, O., Nørgaard-Pedersen, N., Jensen, J., Andresen, K. & Seidenkrantz, M.-S. 2019: Development of the western Limfjord, Denmark, after the last deglaciation: a review with new data. Bulletin of the Geological Society of Denmark 67, 53–73. https://doi.org/10.37570/bgsd-2019-67-04
Bøtter-Jensen, L., Thomsen, K.J. & Jain, M. 2010: Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253–257. https://doi.org/10.1016/j.radmeas.2009.11.030
Branner, W. 1839: Sognekort, Tørring Sogn (Skodborg Herred) 1839. Historiske kort pa nettet. Nørresundby: Geodatastyrelsen.
Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C. & Sohbati, R. 2012: A robust feldspar luminescence dating method for middle and late pleistocene sediments. Boreas 419, 435–451. https://doi.org/10.1111/j.1502-3885.2012.00248.x
Clemmensen, L., Murray, A. & Nielsen, L. 2012: Quantitative constraints on the sea-level fall that terminated the Littorina Sea Stage, southern Scandinavia. Quaternary Science Reviews 40, 54–63. https://doi.org/10.1016/j.quascirev.2012.03.001
Duller, G.A.T. 2008: Single-grain optical dating of quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589–612. https://doi.org/10.1111/j.1502-3885.2008.00051.x
Eriksen, P., Egeberg, T., Olesen, L. & Rostholm, H. 2009: Vikinger i vest. Vikingetiden i Jylland. 70. Aarhus: Jysk Arkæologisk Selskabs Skrifter.
Goodwin, I.D., Stables, M.A. & Olley, J.M. 2006: Wave climate, sand budget and shoreline alignment evolution of the iluka-woody bay sand barrier, northern New South Wales, Australia, since 3000 yr bp. Marine Geology 226(1), 127–144. https://doi.org/10.1016/j.margeo.2005.09.013
Gram-Jensen, I. 1991: Stormfloder. Danish Meteorological Report, 91-1, 121 p.
Guérin, G., Mercier, N. & Adamiec, G. 2011: Dose-rate conversion factors: update. Ancient TL 29, 5–8.
Guérin, G., Mercier, N., Nathan, R., Adamiec, G. & Lefrais, Y. 2012: On the use of the infinite matrix assumption and associated concepts: a critical review. Radiation Measurements 47(9), 778–785. https://doi.org/10.1016/j.radmeas.2012.04.004
Guérin, G. et al. 2017: Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: introducing the average dose model. Quaternary Geochronology 41, 163–173. https://doi.org/10.1016/j.quageo.2017.04.002
Hansen, J., Aagaard, T. & Binderup, M. 2012: Absolute sea levels and isostatic changes of the eastern north sea to central Baltic region during the last 900 years. Boreas 41, 180–208. https://doi.org/10.1111/j.1502-3885.2011.00229.x
Hansen, V., Murray, A.S., Buylaert, J.-P., Yeo, E.Y. & Thomsen, K.J. 2015: A new irradiated quartz for beta source calibration. Radiation Measurements 81, 123–127. https://doi.org/10.1016/j.radmeas.2015.02.017
Hede, M.U., Sander, L., Clemmensen, L.B., Kroon, A., Pejrup, M. & Nielsen, L. 2015: Changes in holocene relative sea-level and coastal morphology: a study of a raised beach ridge system on Samsø, southwest Scandinavia. The Holocene 25(9), 1402–1414. https://doi.org/10.1177/0959683615585834
Jessen, A. 1910: Stenalderhavets udbredelse i det nordlige jylland. Danmarks Geologiske Undersøgelse II. Række, 35, 112 pp. https://doi.org/10.34194/raekke2.v35.6821
Jessen, A. 1936: Vendsyssels Geologi. Danmarks Geologiske Undersøgelse V. Række 2, 195 p. https://doi.org/10.34194/raekke5.v2.7010
Jessen, C., Christensen, C. & Nielsen, B.H. 2019: Postglacial relative sea level rise in the Limfjord region, northern Jutland, Denmark. Boreas 48(1), 119–130. https://doi.org/10.1111/bor.12350
Kristensen, P., Heier-Nielsen, S. & Hylleberg, J. 1995: Late-Holocene salinity fluctuations in Bjømsholm bay, Limfjorden, Denmark, as deduced from micro- and macrofossil analysis. The Holocene 5(3), 313–322. https://doi.org/10.1177/095968369500500306
Kristiansen, S.M., Ljungberg, T.E., Christiansen, T.T., Dalsgaard, K., Haue, N., Greve, M.H. & Nielsen, B.H. 2021: Meadow, marsh and lagoon: Late Holocene coastal changes and human-environment interactions in northern Denmark. Boreas 50(1), 279–293. https://doi.org/10.1111/bor.12487
Lewis, J.P. et al. 2013: Environmental change in the Limfjord, Denmark (ca 7500–1500 cal yrs bp): a multiproxy study. Quaternary Science Reviews 78, 126–140. https://doi.org/10.1016/j.quascirev.2013.05.020
Medialdea, A., Thomsen, K.J., Murray, A.S. & Benito, G. 2014: Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology 22, 11–24. https://doi.org/10.1016/j.quageo.2014.01.004
Mertz, E.L. 1924: Oversigt over de sen- og postglaciale niveauforandringer i danmark. Danmarks Geologiske Undersøgelse II. Række 41, 1–49. https://doi.org/10.34194/raekke2.v41.6827
Murray, A.S. & Wintle, A.G. 2000: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X
Murray, A.S. & Wintle, A.G. 2003: The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377–381. https://doi.org/10.1016/S1350-4487(03)00053-2
Murray, A.S., Marten, R., Johnston, A. & Martin, P. 1987: Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263–288. https://doi.org/10.1007/BF02037443
Murray, A.S., Helsted, L.M., Autzen, M., Jain, M. & Buylaert, J.-P. 2018: Measurement of natural radioactivity: calibration and performance of a high- resolution gamma spectrometry facility. Radiation Measurements 120, 215–220. https://doi.org/10.1016/j.radmeas.2018.04.006
Murray, A.S., Buylaert, J.-P., Guérin, G., Qin, J., Singhvi, A.K., Smedley, R.S., & Thomsen, K.J. 2021: Optically stimulated luminescence dating using quartz sand. Nature Primer 1, 72. https://doi.org/10.1038/s43586-021-00068-5
Nielsen, L. & Clemmensen, L.B. 2009: Sea-level markers identified in ground penetrating radar data collected across a modern beach ridge system in a microtidal regime. Terra Nova 21(6), 474–479. https://doi.org/10.1111/j.1365-3121.2009.00904.x
Penney, D.N. 1985: The Holocene marine sequence in the løkken area of Vendsys-Sel, Denmark. EG Quaternary Science Journal 35(1), 79–88. https://doi.org/10.3285/eg.35.1.12
Petersen, K.S. 1979: Den holocæne marine transgression og molluskfaunaen i hanherred – belyst ud fra en boring ved vust. Arsskrift: Dansk Geologisk Forening, 15–17.
Prescott, J.R. & Hutton, J.T. 1994: Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23, 497–500. https://doi.org/10.1016/1350-4487(94)90086-8
Sander, L., Hede, M.U., Fruergaard, M., Nielsen, L., Clemmensen, L.B., Kroon, A., Johannessen, P.N., Nielsen, L.H. & Pejrup, M. 2016: Coastal lagoons and beach ridges as complementary sedimentary archives for the reconstruction of Holocene relative sea-level changes. Terra Nova 28(1), 43–49. https://doi.org/10.1111/ter.12187
Shukla, P. et al. 2022: Summary for policymakers. In Shukla, P. et al. (eds): Climate change 2022: mitigation of climate change. Contribution of working group iii to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 112 pp.
Skovborg, H. 1957: Vestersøs klægbanker mellem lemvig og harboøre er nu under plov. Hedeselskabets Tidsskrift 78, 4.
Tamura, T., Murakami, F., Nanayama, F., Watanabe, K. & Saito, Y. 2008: Ground-penetrating radar profiles of Holocene raised-beach deposits in the Kujukuri strand plain, Pacific coast of eastern Japan. Marine Geology 248(1), 11–27. https://doi.org/10.1016/j.margeo.2007.10.002
Vandenberghe, D., De Corte, F., Buylaert, J.-P. & Kučera, J. 2008: On the internal radioactivity in quartz. Radiation Measurements 43(2–6), 771–775. https://doi.org/10.1016/j.radmeas.2008.01.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Trine Freiesleben, Lasse Rokkedahl Berntsen, Maria Blæsbjerg, Emilia Høffer, Christian Rasmussen, Nicolaj Krog Larsen
This work is licensed under a Creative Commons Attribution 4.0 International License.
GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.