Neural network predictions of drawdown from groundwater abstraction in the Egebjerg catchment, Denmark
DOI:
https://doi.org/10.34194/geusb.v53.8357Keywords:
Decision support, Groundwater modelling, Machine learning, Probabilistic neural network, Resource managementAbstract
Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead. This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management.
Downloads
References
Abadi, M. et al. 2016: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467
Belitz, K. & Stackelberg, P.E. 2021: Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environmental Modelling & Software 139, 105006. https://doi.org/10.1016/j.envsoft.2021.105006
Dahl, M.B., Vilhelmsen, T.N., Bach, T. & Hansen, T.M. 2023: Hydraulic head change predictions in groundwater models using a probabilistic neural network. Frontiers in Water 5. https://doi.org/10.3389/frwa.2023.1028922
Dillon, J.V. et al. 2017: Tensorflow distributions. arXiv preprint arXiv:1711.10604. https://doi.org/10.48550/arXiv.1711.10604
Enemark, T., Andersen, L.T., Høyer, A.-S., Jensen, K.H., Kidmose, J., Sandersen, P.B.E. & Sonnenborg, T.O. 2022: The influence of layer and voxel geological modelling strategy on groundwater modelling results. Hydrogeology Journal 30(2), 617–635. https://doi.org/10.1007/s10040-021-02442-9
Furtney, J. 2021: Scikit-fmm: The fast marching method for Python. https://github.com/scikit-fmm/scikit-fmm (accessed June 2023).
Gardner, M.W. & Dorling, S.R. 1998: Artificial neural networks (the multilayer perceptron) – A review of applications in the atmospheric sciences. Atmospheric Environment 32, 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0
Gorelick, S.M. 1983: A review of distributed parameter groundwater management modeling methods. Water Resources Research 19, 305–319. https://doi.org/10.1029/WR019i002p00305
Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. & Aureli, A. 2011: Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology 405(3), 532–560. https://doi.org/10.1016/j.jhydrol.2011.05.002
Hadded, R., Nouiri, I., Alshihabi, O., Mamann, J., Huber, M., Laghouane, A., Yahiaoui, H. & Tarhouni, J. 2013: A decision support system to manage the groundwater of the Zeuss Koutine Aquifer using the WEAP-MODFLOW framework. Water Resources Management 27, 1981–2000. https://doi.org/10.1007/s11269-013-0266-7
Harbaugh, A.W. 2005: MODFLOW-2005, The U.S. Geological Survey modular ground-water model — the ground-water flow process: U.S. Geological Survey Techniques and Methods 6-A16. USGS. https://doi.org/10.3133/tm6A16
Hendrycks, D. & Gimpel, K. 2016: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415. https://doi.org/10.48550/arXiv.1606.08415
Kingma, D.P. & Ba, J. 2014: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
Johnson, J.M. & Khoshgoftaar, T.M. 2019: Survey on deep learning with class imbalance. Journal of Big Data 6(1), 27. https://doi.org/10.1186/s40537-019-0192-5
Kingma, D.P. & Ba, J. 2014: Adam: A method for stochastic optimization. arXiv Preprint arXiv:1412.6980.
Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S. & Provost, A.M. 2017: Documentation for the MODFLOW 6 Groundwater Flow Model. Report. U.S. Geological Survey Techniques and Methods 6-A55. http://pubs.er.usgs.gov/publication/tm6A55 (accessed June 2023).
Langevin, C., Hughes, J., Banta, E., Provost, A., Niswonger, R. & Panday, S. 2019: MODFLOW 6 Modular Hydrologic Model Version 6.1.0. U.S. Geological Survey Software. https://doi.org/10.5066/F76Q1VQV
Pisinaras, V., Petalas, C., Tsihrintzis, V.A. & Zagana, E. 2007: A groundwater flow model for water resources management in the Ismarida plain, North Greece. Environmental Modeling & Assessment 12(2), 75–89. https://doi.org/10.1007/s10666-006-9040-z
Thibaut, R., Laloy, E. & Hermans, T. 2021: A new framework for experimental design using Bayesian Evidential Learning: The case of well-head protection area. Journal of Hydrology 603, 126903. https://doi.org/10.1016/j.jhydrol.2021.126903
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mathias Busk Dahl, Troels Norvin Vilhelmsen, Trine Enemark, Thomas Mejer Hansen
This work is licensed under a Creative Commons Attribution 4.0 International License.
GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.