Paleo sea-level indicators and proxies from Greenland in the GAPSLIP database and comparison with modelled sea level from the PaleoMIST ice-sheet reconstruction

Authors

  • Evan J Gowan Department of Earth and Environmental Sciences, Kumamoto University, Kumamoto, Japan; KIKAI institute for Coral Reef Sciences, Kagoshima, Japan https://orcid.org/0000-0002-0119-9440

DOI:

https://doi.org/10.34194/geusb.v53.8355

Keywords:

Glacial isostatic adjustment, Ice sheets, Sea level, Holocene, Model-data comparison

Abstract

One of the most common ways to assess ice-sheet reconstructions of the past is to evaluate how they impact changes in sea level through glacial isostatic adjustment. PaleoMIST 1.0, a preliminary reconstruction of topography and ice sheets during the past 80 000 years, was created without a rigorous comparison with past sea-level indicators and proxies in Greenland. The basal shear stress values for the Greenland ice sheet were deduced from the present day ice-sheet configuration, which were used for the entire 80 000 years without modification. The margin chronology was based on previous reconstructions and interpolation between them. As a result, it was not known if the Greenland component was representative of its ice-sheet history. In this study, I compile sea–level proxy data into the Global Archive of Paleo Sea Level Indicators and Proxies (GAPSLIP) database and use them to evaluate the PaleoMIST 1.0 reconstruction. The Last Glacial Maximum (c.20 000 years before present) contribution to sea level in PaleoMIST 1.0 is about 3.5 m, intermediate of other reconstructions of the Greenland ice sheet. The results of the data-model comparison show that PaleoMIST requires a larger pre-Holocene ice volume than it currently has to match the sea-level highstands observed around Greenland, especially in southern Greenland. Some of this mismatch is likely because of the crude 2500 year time step used in the margin reconstruction and the limited Last Glacial Maximum extent. Much of the mismatch can also be mitigated if different Earth model structures, particularly a thinner lithosphere, are assumed. Additional ice in Greenland would contribute to increasing the 3–5 m mismatch between the modelled far-field sea level at the Last Glacial Maximum and proxies in PaleoMIST 1.0.

Downloads

Download data is not yet available.

References

Alley, R.B. et al. 2010: History of the Greenland Ice Sheet: paleoclimatic insights. Quaternary Science Reviews 29, 1728–1756. https://doi.org/10.1016/j.quascirev.2010.02.007

Andrews, J.T. & Voelker, A.H. 2018: ‘Heinrich Events’ (& sediments): a history of terminology and recommendations for future usage. Quaternary Science Reviews 187, 31–40. https://doi.org/10.1016/j.quascirev.2018.03.017

Baranskaya, A.V., Khan, N.S., Romanenko, F.A., Roy, K., Peltier, W. & Horton, B.P. 2018: A postglacial relative sea-level database for the Russian Arctic coast. Quaternary Science Reviews 199, 188–205. https://doi.org/10.1016Zj.quascirev.2018.07.033

Belperio, A.P., Harvey, N. & Bourman, R.P. 2002: Spatial and temporal variability in the Holocene sea-level record of the South Australian coastline. Sedimentary Geology 150, 153–169. https://doi.org/10.1016/S0037-0738(01)00273-1

Bennike, O. 1995: Palaeoecology of two lake basins from Disko, West Greenland. Journal of Quaternary Science 10, 149–155. https://doi.org/10.1002/jqs.3390100205

Bennike, O. 1997: Quaternary vertebrates from Greenland: a review. Quaternary Science Reviews 16, 899–909. https://doi.org/10.1016/S0277-3791(97)00002-4

Bennike, O. 2002: Late Quaternary history of Washington Land, North Greenland. Boreas 31, 260–272. https://doi.org/10.1111/j.1502-3885.2002.tb01072.x

Bennike, O. & Kelly, M. 1987: Radiocarbon dating of samples collected during the 1984 expedition to North Greenland. Rapport Grønlands Geologiske Undersøgelse 135, 8–10.

Bennike, O. & Wagner, B. 2012: Deglaciation chronology, sea-level changes and environmental changes from Holocene lake sediments of Germania Havn Sø, Sabine Ø, northeast Greenland. Quaternary Research 78, 103–109. https://doi.org/10.1016/j.yqres.2012.03.004

Bennike, O. & Weidick, A. 2001: Late Quaternary history around Nioghalvfjerdsfjorden and Jøkelbugten, North-East Greenland. Boreas 30, 205–227. https://doi.org/10.111lZj.1502-3885.2001.tb01223.x

Bennike, O., Björck, S. & Lambeck, K. 2002: Estimates of South Greenland late-glacial ice limits from a new relative sea level curve. Earth and Planetary Science Letters 197, 171–186. https://doi.org/10.1016/S0012-821X(02)00478-8

Bennike, O., Wagner, B. & Richter, A. 2011: Relative sea level changes during the Holocene in the Sisimiut area, south-western Greenland. Journal of Quaternary Science 26, 353–361. https://doi.org/10.1002/jqs.1458

Berglund, M. 2003: The architecture at three Saqqaq sites in the Nuuk Fjord, Greenland. Etudes/Inuit/Studies 27, 329–346. https://doi.org/10.7202/010807ar

Bierman, P.R., Rood, D.H., Shakun, J.D., Portenga, E.W. & Corbett, L.B. 2018: Directly dating postglacial Greenlandic land-surface emergence at high resolution using in situ 10Be. Quaternary Research 90, 110–126. https://doi.org/10.1017/qua.2018.6

Björck, S., Bennike, O., Ingólfsson, Ó., Barnekow, L. & Penney, D.N. 1994a: Lake Boksehandsken’s earliest postglacial sediments and their palaeoenvironmental implications, Jameson Land, East Greenland. Boreas 23, 459–472. https://doi.org/10.1111/j.1502-3885.1994.tb00613.x

Björck, S., Wohlfarth, B., Bennike, O., Hjort, C. & Persson, T. 1994b: Revision of the early Holocene lake sediment based chronology and event stratigraphy on Hochstetter Forland, NE Greenland. Boreas 23, 513–523. https://doi.org/10.1111/j.1502-3885.1994.tb00619.x

Blake, W. 1987a: Geological survey of Canada radiocarbon dates XXVI. Paper 87–7. Ottawa: Geological Survey of Canada. https://doi.org/10.4095/122368

Blake, W. 1987b: Lake sediments and glacial history in the high arctic; evidence from East-Central Ellesmere Island, Arctic Canada, and from Inglefield Land, Greenland. Polar Research 5, 341–343. https://doi.org/10.3402/polar.v5i3.6909

Blake, W., Jackson, H.R. & Currie, C.G. 1996: Seafloor evidence for glaciation, northernmost Baffin Bay. Bulletin of the Geological Society of Denmark 43, 157–168. https://doi.org/10.37570/bgsd-1996-43-15

Borreggine, M., Latychev, K., Coulson, S., Powell, E.M., Mitrovica, J.X., Milne, G.A. & Alley, R.B. 2023: Sea-level rise in Southwest Greenland as a contributor to viking abandonment. Proceedings of the National Academy of Sciences 120, e2209615120. https://doi.org/10.1073/pnas.2209615120

Briggs, R.D. & Tarasov, L. 2013: How to evaluate model-derived deglaciation chronologies: a case study using Antarctica. Quaternary Science Reviews 63, 109–127. https://doi.org/10.1016/j.quascirev.2012.11.021

Bronk Ramsey, C. 2009: Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865

Carlson, A.E., Dutton, A., Long, A.J. & Milne, G.A. 2019: PALeo constraints on SEA level rise (PALSEA): ice-sheet and sea-level responses to past climate warming. Quaternary Science Reviews 212, 28–32. https://doi.org/10.1016/j.quascirev.2019.03.032

Christiansen, H.H., Bennike, O., Böcher, J., Elberling, B., Humlum, O. & Jakobsen, B.H. 2002: Holocene environmental reconstruction from deltaic deposits in northeast Greenland. Journal of Quaternary Science 17, 145–160. https://doi.org/10.1002/jqs.665

Coulthard, R.D., Furze, M.F., Pieńkowski, A.J., Nixon, C. & England, J.H. 2010: New marine AR values for Arctic Canada. Quaternary Geochronology 5, 419–434. https://doi.org/10.1016/j.quageo.2010.03.002

Crameri, F., Shephard, G.E. & Heron, P.J. 2020: The misuse of colour in science communication. Nature Communications 11, 5444. https://doi.org/10.1038/s41467-020-19160-7

Cuffey, K.M. & Clow, G.D. 1997: Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. Journal of Geophysical Research: Oceans 102, 26383–26396. https://doi.org/10.1029/96JC03981

Cuffey, K.M. & Paterson, W.S.B. 2010: The physics of glaciers. Burlington, MA, USA: Elsevier.

Dalton, A.S., Finkelstein, S.A., Forman, S.L., Barnett, P.J., Pico, T. & Mitrovica, J.X. 2019: Was the Laurentide Ice Sheet significantly reduced during marine isotope stage 3? Geology 47, 111–114. https://doi.org/10.1130/G45335.1

de Boer, B., Stocchi, P. & Van De Wal, R. 2014: A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development 7, 2141–2156: https://doi.org/10.5194/gmd-7-2141-2014

de Boer, B., Stocchi, P., Whitehouse, P.L. & van de Wal, R.S. 2017: Current state and future perspectives on coupled ice-sheet – sea-level modelling. Quaternary Science Reviews 169, 13–28. https://doi.org/10.1016/j.quascirev.2017.05.013

Dyke, A.S. 2004: An outline of North American deglaciation with emphasis on central and northern Canada. In: Ehlers, J. et al. (eds): Quaternary glaciations-extent and chronology – part II: North America. Cambridge: Elsevier. Developments in Quaternary Science, 373–424. https://doi.org/10.1016/S1571-0866(04)80209-4

Dyke, A.S., Dredge, L.A. & Hodgson, D.A. 2005: North American deglacial marine-and lake-limit surfaces. Géographie physique et Quaternaire 59, 155–185. https://doi.org/10.7202/014753ar

Dyke, A.S., Savelle, J.M., Szpak, P., Southon, J.R., Howse, L., Desrosiers, P.M. & Kotar, K. 2019: An assessment of marine reservoir corrections for radiocarbon dates on walrus from the Foxe Basin region of Arctic Canada. Radiocarbon 61, 67–81. https://doi.org/10.1017/RDC.2018.50

Engelhart, S.E. & Horton, B.P. 2012: Holocene sea level database for the Atlantic coast of the United States. Quaternary Science Reviews 54, 12–25. https://doi.org/10.1016/j.quascirev.2011.09.013

England, J. 1985: The late Quaternary history of Hall Land, northwest Greenland. Canadian Journal of Earth Sciences 22, 1394–1408. https://doi.org/10.1139/e85-147

Fleming, K. & Lambeck, K. 2004: Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quaternary Science Reviews 23, 1053–1077. https://doi.org/10.1016/j.quascirev.2003.11.001

Fox-Kemper, B. et al. 2021: Ocean, cryosphere and sea level change. In: Masson-Delmotte, V. et al. (eds): Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1211–1362. Cambridge and New York: Cambridge University Press. https://doi.org/10.1017/9781009157896.011

Fredh, D. 2008: Holocene relative sea-level changes in the Tasiusaq area, southern Greenland, with focus on the Ta4 basin. Master’s thesis, Lund University. https://lup.lub.lu.se/student-papers/record/2334019 (accessed August 2022).

Fredskild, B. 1973: Studies in the vegetational history of Greenland. Palaeobotanical investigations of some Holocene lake and bog deposits. Vol. 198. Copenhagen: Museum Tusculanum Press Denmark.

Fredskild, B. 1983: The Holocene vegetational development of the Godthåbsfjord area, West Greenland. Meddelelser om Grønland. Geoscience 10. Copenhagen: Museum Tusculanum Press.

Fredskild, B. 1985: The Holocene vegetational development of Tugtuligssuaq and Qeqertat, northwest Greenland. Meddelelser om Grønland Geoscience 14, 20.

Funder, S. 1971: C14 dates from the Scoresby Sund region, 1971. Rapport Grønlands Geologiske Undersøgelse 37, 57–59. https://doi.org/10.34194/rapggu.v37.7277

Funder, S. 1972: C14 dates from the Scoresby Sund region, 1972. Rapport Grønlands Geologiske Undersøgelse 48, 115–117. https://doi.org/10.34194/rapggu.v48.7316

Funder, S. 1973: C14 dates from the Scoresby Sund region, 1973. Rapport Grønlands Geologiske Undersøgelse 58, 75–76. https://doi.org/10.34194/rapggu.v58.7368

Funder, S. 1978: Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland. Bulletin Grønlands Geologiske Undersøgelse 129, 1–66. https://doi.org/10.34194/bullggu.v129.6671

Funder, S. 1982: 14C-dating of samples collected during the 1979 expedition to North Greenland. Rapport Grønlands Geologiske Undersøgelse 110, 9–14. https://doi.org/10.34194/rapggu.v110.7787

Funder, S. 1990a: Descriptive text to Quaternary map of Greenland 1: 500,000, Scoresby Sund. sheet 12. Copenhagen, Denmark: Grønlands Geologiske Undersøgelse.

Funder, S. 1990b: Late Quaternary stratigraphy and glaciology in the Thule area, Northwest Greenland. Meddelelser om Grønland, Geoscience 22, 63.

Funder, S. & Abrahamsen, N. 1988: Palynology in a polar desert, eastern North Greenland. Boreas 17, 195–207. https://doi.org/10.1111/j.1502-3885.1988.tb00546.x

Funder, S. & Hansen, L. 1996: The Greenland ice sheet – a model for its culmination and decay during and after the last glacial maximum. Bulletin of the Geological Society of Denmark 42, 137–152. https://doi.org/10.37570/bgsd-1995-42-12

Funder, S et al. 2011a: A 10,000-Year record of Arctic Ocean sea-ice variability-view from the beach. Science 333, 747–750. https://doi.org/10.1126/science.1202760

Funder, S., Kjeldsen, K.K., Kjær, K.H. & Ó Cofaigh, C. 2011b: The Greenland Ice Sheet during the past 300,000 years: a review. Developments in Quaternary Sciences. 15, 699–713. https://doi.org/10.1016/B978-0-444-53447-7.00050-7

Foged, N. 1989: The subfossil diatom flora of four geographically widely separated cores in Greenland. Meddelelser om Grønland 268, 75 pp.

Glueder, A. et al. 2022: Calibrated relative sea levels constrain isostatic adjustment and ice history in northwest Greenland. Quaternary Science Reviews 293, 107700. https://doi.org/10.1016/j.quascirev.2022.107700

Gowan, E.J. 2023a: Comparison of the PaleoMIST 1.0 ice sheet margins, ice sheet and paleo-topography reconstruction with paleo sea level indicators, version 2.0. Data set. Zenodo. https://doi.org/10.5281/zenodo.7923553

Gowan, E.J. 2023b: Evangowan/paleo_sea_level: Gapslip version 2.0.1. Data set. Zenodo. https://doi.org/10.5281/zenodo.8036475

Gowan, E.J. 2023c: Paleo sea level proxies and indicators for Greenland. Data set. Zenodo. https://doi.org/10.5281/zenodo.8036551

Gowan, E.J. et al. 2021: A new global ice sheet reconstruction for the past 80000 years. Nature Communications 12, 1199. https://doi.org/10.1038/s41467-021-21469-w

Gowan, E.J., Tregoning, P., Purcell, A., Lea, J., Fransner, O.J., Noormets, R. & Dowdeswell, J.A. 2016a: ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions. Geoscience Model Development 9, 1673–1682. https://doi.org/10.5194/gmd-9-1673-2016. 2016.

Gowan, E.J., Tregoning, P., Purcell, A., Montillet, J.P. & McClusky, S. 2016b: A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment. Quaternary Science Reviews 139, 1–16. https://doi.org/10.1016/j.quascirev.2016.03.003

Gowan, E.J. et al. 2022: Reply to: towards solving the missing ice problem and the importance of rigorous model data comparisons. Nature Communications 13, 6264. https://doi.org/10.1038/s41467-022-33954-x

Graham, B.L., Briner, J.P., Schweinsberg, A.D., Lifton, N.A. & Bennike, O. 2019: New in situ 14C data indicate the absence of nunataks in west Greenland during the Last Glacial Maximum. Quaternary Science Reviews 225, 105981. https://doi.org/10.1016/j.quascirev.2019.105981

Hall, B.L., Baroni, C. & Denton, G.H. 2008: The most extensive Holocene advance in the Stauning Alper, East Greenland, occurred in the Little Ice Age. Polar Research 27, 128–134. https://doi.org/10.1111/j.1751-8369.2008.00058.x

Hall, B.L., Baroni, C. & Denton, G.H. 2010: Relative sea-level changes, Schuchert Dal, East Greenland, with implications for ice extent in late-glacial and Holocene times. Quaternary Science Reviews 29, 3370–3378. https://doi.org/10.1016/j.quascirev.2010.03.013

Heaton, T.J. et al. 2020: Marine20 – The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820. https://doi.org/10.1017/RDC.2020.68

Henriksen, N., Higgins, A., Kalsbeek, F. & Pulvertaft, T.C.R. 2000: Greenland from Archaean to Quaternary. Descriptive text to the Geological map of Greenland, 1:2 500 000. Geology of Greenland Survey Bulletin 185, 2–93. https://doi.org/10.34194/ggub.v185.5197

Hinnerson-Berglund, M. 2004: Mobilitet och estetik. Nuukfjorden på Grönlands västkust som människornas livsvärld for 4000 är sedan. PhD Thesis. University of Gothenburg. https://hdl.handle.net/2077/16433 (accessed December 2022).

Hjort, C. 1973: The vega transgression – a hypsithermal event in Central East Greenland. Bulletin of the Geological Society of Denmark 22, 25–38.

Hjort, C. 1979: Glaciation in northern East Greenland during the Late Weichselian and Early Flandrian. Boreas 8, 281–296. https://doi.org/10.1111/j.1502-3885.1979.tb00812.x

Hjort, C. 1981: A glacial chronology for northern East Greenland. Boreas 10, 259–274. https://doi.org/10.1111/j.1502-3885.1981.tb00487.x

Hjort, C. 1997: Glaciation, climate history, changing marine levels and the evolution of the Northeast Water polynya. Journal of Marine Systems 10, 23–33. https://doi.org/10.1016/S0924-7963C96)00068-1

Hjort, C. & Funder, S. 1974: The subfossil occurrence of Mytilus edulis L. in central East Greenland. Boreas 3, 23–33. https://doi.org/10.1111/j.1502-3885.1974.tb00664.x

Hogg, A.G. et al: 2020: SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778. https://doi.org/10.1017/RDC.2020.59

Hughes, A.L., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J. & Svendsen, J.I. 2016: The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45. https://doi.org/10.1111/bor.12142

Hughes, T. 1981: Numerical reconstructions of paleo-ice sheets. In: Denton, G.H., Hughes, T.J. (eds): The last great ice sheets. 221–261. New York: John Wiley & Sons.

Hughes, T., Denton, G., Andersen, B., Schilling, D., Fastook, J. & Lingle, C. 1981: The last great ice sheets: a global view. In: Denton, G.H. & Hughes, T.J. (eds): The last great ice sheets. 263–317. New York: John Wiley & Sons.

Håkansson, S. 1972: University of Lund Radiocarbon Dates V. Radiocarbon 14, 380. https://doi.org/10.1017/S0033822200059440

Håkansson, S. 1973: University of Lund Radiocarbon Dates VI. Radiocarbon 15, 493–513. https://doi.org/10.1017/S0033822200008961

Håkansson, S. 1974: University of Lund Radiocarbon Dates VII. Radiocarbon 16, 307–330. https://doi.org/10.1017/S0033822200059634

Håkansson, S. 1975: University of Lund Radiocarbon Dates VIII. Radiocarbon 17, 174–195. https://doi.org/10.1017/S0033822200002034

Håkansson, S. 1976: University of Lund Radiocarbon Dates IX. Radiocarbon 18, 290–320. https://doi.org/10.1017/S0033822200003179

Håkansson, S. 1978: University of Lund Radiocarbon Dates XI. Radiocarbon 20, 416–435. https://doi.org/10.1017/S0033822200009218

Håkansson, S. 1981: University of Lund Radiocarbon Dates XIV. Radiocarbon 23, 384–403. https://doi.org/10.1017/S0033822200037784

Håkansson, S. 1982: University of Lund Radiocarbon Dates XV. Radiocarbon 24, 194–213. https://doi.org/10.1017/S003382220000504X

Håkansson, S. 1987: University of Lund Radiocarbon Dates XX. Radiocarbon 29, 353–379. https://doi.org/10.1017/S0033822200043769

Ingólfsson, Ó., Lyså, A., Funder, S., Möller, P. & Björck, S. 1994: Late Quaternary glacial history of the central west coast of Jameson Land, East Greenland. Boreas 23, 447–458. https://doi.org/10.1111/j.1502-3885.1994.tb00612.x

Ishiwa, T., Okuno, J. & Suganuma, Y. 2021: Excess ice loads in the Indian Ocean sector of East Antarctica during the last glacial period. Geology 49, 1182–1186. https://doi.org/10.1130/G48830.1

Ives, P.C., Levin, B., Robinson, R.D. & Rubin, M. 1964: U. S. Geological Survey Radiocarbon Dates VII. Radiocarbon 6, 37–76. https://doi.org/10.1017/S0033822200010547

Jungner, H. 1979: Radiocarbon dates I. Technical Report. Dating Laboratory, University of Helsinki. Helsinki, Finland. https://hdl.handle.net/10013/epic.ea2eff4a-ff59-4639-a921-7dda7392d5e1 (accessed November 2022).

Kelly, M. & Bennike, O. 1985: Quaternary geology of parts of central and western North Greenland: a preliminary account. Rapport Grønlands Geologiske Undersøgelse 126, 111–116. https://doi.org/10.34194/rapggu.v126.7917

Kelly, M. & Bennike, O. 1992: Quaternary geology of western and central North Greenland. Rapport Grønlands Geologiske Undersøgelse 153, 1–34. https://doi.org/10.34194/rapggu.v153.8164

Kelly, M., Funder, S., Houmark-Nielsen, M., Knudsen, K.L., Kronborg, C., Landvik, J. & Sorby, L. 1999: Quaternary glacial and marine environmental history of northwest Greenland: a review and reappraisal. Quaternary Science Reviews 18, 373–392. https://doi.org/10.1016/S0277-3791(98)00004-3

Khan, N.S. et al. (HOLSEA working group) 2019: Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews 220, 359–371. https://doi.org/10.1016/j.quascirev.2019.07.016

Khan, S.A. et al. 2016: Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances 2, e1600931. https://doi.org/10.1126/sciadv.1600931

Khosravi, S. 2017: Comparison of the past climate in Northern Canada and Greenland. Master’s thesis, University of Bremen. https://www.iup.uni-bremen.de/PEP_master_thesis/thesis_2017/Khosravi_Sara_MScThesis.pdf (accessed June 2022).

Landvik, J.Y. 1994: The last glaciation of Germania Land and adjacent areas, northeast Greenland. Journal of Quaternary Science 9, 81–92. https://doi.org/10.1002/jqs.3390090108

Landvik, J.Y., Weidick, A. & Hansen, A. 2001: The glacial history of the Hans Tausen Iskappe and the last glaciation of Peary Land, North Greenland. Meddelelser om Grønland, Geoscience 39, 27–44.

Larcombe, P., Carter, R., Dye, J., Gagan, M. & Johnson, D. 1995: New evidence for episodic post-glacial sea-level rise, central Great Barrier Reef, Australia. Marine Geology 127, 1–44. https://doi.org/10.1016/0025-3227(95)00059-8

Larsen, N.K., Funder, S., Kjær, K.H., Kjeldsen, K.K., Knudsen, M.F. & Linge, H. 2014: Rapid early Holocene ice retreat in West Greenland. Quaternary Science Reviews 92, 310–323. https://doi.org/10.1016/j.quascirev.2013.05.027

Larsen, N.K., Strunk, A., Levy, L.B., Olsen, J., Bjørk, A., Lauridsen, T.L., Jeppesen, E. & Davidson, T.A. 2017: Strong altitudinal control on the response of local glaciers to Holocene climate change in southwest Greenland. Quaternary Science Reviews 168, 69–78. https://doi.org/10.1016Zj.quascirev.2017.05.008

Larsen, N.K., Levy, L.B., Carlson, A.E., Buizert, C., Olsen, J., Strunk, A., Bjørk, A.A. & Skov, D.S. 2018: Instability of the Northeast Greenland Ice Stream over the last 45,000 years. Nature Communications 9, 1872. https://doi.org/10.1038/s41467-018-04312-7

Lasca, N.P. 1966: Postglacial delevelling in Skeldal, Northeast Greenland. Arctic 19, 285–364. https://doi.org/10.14430/arctic3441

Lasher, G.E., Axford, Y., Masterson, A.L., Berman, K. & Larocca, L.J. 2020: Holocene temperature and landscape history of southwest Greenland inferred from isotope and geochemical lake sediment proxies. Quaternary Science Reviews 239, 106358. https://doi.org/j.quascirev.2020.106358

Lecavalier, B.S., Milne, G.A., Vinther, B.M., Fisher, D.A., Dyke, A.S. & Simpson, M.J. 2013: Revised estimates of Greenland ice sheet thinning histories based on ice-core records. Quaternary Science Reviews 63, 73–82. https://doi.org/10.1016/j.quascirev.2012.11.030

Lecavalier, B.S. et al. 2014: A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews 102, 54–84. https://doi.org/10.1016/j.quascirev.2014.07.018

Leger, T.P.M., Clark, C.D., Huynh, C., Jones, S., Ely, J.C., Bradley, S.L., Diemont, C. & Hughes, A.L.C. 2023: A Greenland-wide empirical reconstruction of paleo ice-sheet retreat informed by ice extent markers: Paleogris version 1.0. Climate of the Past Discussions 2023, 1–97. https://doi.org/10.5194/cp-2023-60

Lewis, S.E., Sloss, C.R., Murray-Wallace, C.V., Woodroffe, C.D. & Smithers, S.G. 2013: Post-glacial sea-level changes around the Australian margin: a review. Quaternary Science Reviews 74, 115–138. https://doi.org/10.1016/j.quascirev.2012.09.006

Long, A.J. & Roberts, D.H. 2002: A revised chronology for the ‘Fjord Stade’ moraine in Disko Bugt, west Greenland. Journal of Quaternary Science 17, 561–579. https://doi.org/10.1002/jqs.705

Long, A.J. & Roberts, D.H. 2003: Late Weichselian deglacial history of Disko Bugt, West Greenland, and the dynamics of the Jakobshavns Isbrae ice stream. Boreas 32, 208–226. https://doi.org/10.1111/j.1502-3885.2003.tb01438.x

Long, A.J., Roberts, D.H. & Rasch, M. 2003: New observations on the relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt. Quaternary Research 60, 162–171. https://doi.org/10.1016/S0033-5894(03)00085-1

Long, A., Roberts, D. & Dawson, S. 2006: Early Holocene history of the west Greenland Ice Sheet and the GH-8.2 event. Quaternary Science Reviews 25, 904–922. https://doi.org/10.1016/j.quascirev.2005.07.002

Long, A.J., Roberts, D.H., Simpson, M.J., Dawson, S., Milne, G.A. & Huybrechts, P. 2008: Late Weichselian relative sea-level changes and ice sheet history in southeast Greenland. Earth and Planetary Science Letters 272, 8–18. https://doi.org/10.1016/j.epsl.2008.03.042

Long, A.J., Roberts, D.H. & Wright, M.R. 1999: Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. Journal of Quaternary Science 14, 323–345. https://doi.org/10.1002/(SICI)1099-1417(199907)14:4<323::AID-JQS442>3.0.CO;2-0

Long, A.J., Woodroffe, S.A., Dawson, S., Roberts, D.H. & Bryant, C.L. 2009: Late Holocene relative sea level rise and the Neoglacial history of the Greenland ice sheet. Journal of Quaternary Science 24, 345–359. https://doi.org/10.1002/jqs.1235

Long, A.J., Woodroffe, S.A., Roberts, D.H. & Dawson, S. 2011: Isolation basins, sea-level changes and the Holocene history of the Greenland Ice Sheet. Quaternary Science Reviews 30, 3748–3768. https://doi.org/10.1016/j.quascirev.2011.10.013

Lorscheid, T. & Rovere, A. 2019: The indicative meaning calculator-quantification of paleo sea-level relationships by using global wave and tide datasets. Open Geospatial Data, Software and Standards 4, 10. https://doi.org/10.1186/s40965-019-0069-8

Mann, T., Bender, M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A.D. & Rovere, A. 2019: Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database. Quaternary Science Reviews 219, 112–125. https://doi.org/10.1016/j.quascirev.2019.07.007

McGovern, T.H., Amorosi, T., Perdikaris, S. & Woollett, J. 1996: Vertebrate zooarchaeology of Sandnes V51: Economic change at a chieftain’s farm in West Greenland. Arctic Anthropology 33, 94–121. https://www.jstor.org/stable/40316414 (accessed 31 August 2022).

McMartin, I., Gauthier, M.S. & Page, A.V. 2022: Updated post-glacial marine limits along western Hudson Bay, central mainland Nunavut and northern Manitoba. Technical Report. Ottawa: Natural Resources Canada. https://doi.org/10.4095/330940

McNeely, R. & Brennan, J. 2005: Geological Survey of Canada revised shell dates. Open File 5019. Ottawa: Geological Survey of Canada. https://doi.org/10.4095/221215

McNeely, R. & McCuaig, S. 1991: Geological Survey of Canada radiocarbon dates XXIX. Paper 89-7. Ottawa: Geological Survey of Canada. https://doi.org/10.4095/132453

McNeely, R., Dyke, A. & Southon, J. 2006: Canadian marine reservoir ages, preliminary data assessment. Open File 5049. Ottawa: Geological Survey of Canada. https://doi.org/10.4095/221564

Milne, G.A., Latychev, K., Schaeffer, A., Crowley, J.W., Lecavalier, B.S. & Audette, A. 2018: The influence of lateral Earth structure on glacial isostatic adjustment in Greenland. Geophysical Journal International 214, 1252–1266. https://doi.org/10.1093/gji/ggy189

Morlighem, M. et al. 2017: BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined With mass conservation. Geophysical Research Letters 44, 11 051–11 061. https://doi.org/10.1002/2017GL074954

Morlighem, M. et al. 2022: Icebridge bedmachine Greenland, version 5. Data set. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/GMEVBWFLWA7X

Möller, P., Larsen, N.K., Kjær, K.H., Funder, S., Schomacker, A., Linge, H. & Fabel, D. 2010: Early to middle Holocene valley glaciations on northernmost Greenland. Quaternary Science Reviews 29, 3379–3398. https://doi.org/10.1016/j.quascirev.2010.06.044

Mörner, N.A. & Funder, S. 1990: C-14 dating of samples collected during the NORDQUA 86 expedition, and notes on the marine reservoir effect. In: Funder, S. (ed.): Late quaternary stratigraphy and glaciology in the Thule area, Northwest Greenland. Commission for Scientific Investigations in Greenland. Meddelelser om Grønland Geoscience 22, 57–59.

Olsson, I.U. 1980: Content of 14C in marine mammals from Northern Europe. Radiocarbon 22, 662–675. https://doi.org/10.1017/S0033822200010031

Ó Cofaigh, C. et al. 2013: An extensive and dynamic ice sheet on the West Greenland shelf during the last glacial cycle. Geology 41, 219–222. https://doi.org/10.1130/G33759.1

Paxman, G.J.G., Lau, H.C.P., Austermann, J., Holtzman, B.K. & Havlin, C. 2023: Inference of the timescale-dependent apparent viscosity structure in the upper mantle beneath Greenland. AGU Advances 4, e2022AV000751. https://doi.org/10.1029/2022AV000751

Pedersen, J.B.T., Kroon, A. & Jakobsen, B.H. 2011: Holocene sea-level reconstruction in the Young Sound region, Northeast Greenland. Journal of Quaternary Science 26, 219–226. https://doi.org/10.1002/jqs.1449

Peltier, W. 2004: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32, 111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359

Peltier, W.R., Argus, D.F. & Drummond, R. 2015: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth 120, 450–487. https://doi.org/10.1002/2014JB011176

RAISED Consortium et al. 2014: A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews 100, 1–9. https://doi.org/10.1016/j.quascirev.2014.06.025

Randsalu, L. 2008: Holocene relative sea-level changes in the Tasiusaq area, southern Greenland, with focus on the Ta1 and Ta3 basins. Master’s thesis. Lund University. https://lup.lub.lu.se/studentt-papers/record/1320376 (accessed August 2022).

Rasch, M. 1997: A compilation of radiocarbon dates from Disko Bugt, Central West Greenland. Geografisk Tidsskrift – Danish Journal of Geography 97, 143–159. https://doi.org/10.1080/00167223.1997.10649400

Reeh, N. 1985: Was the Greenland ice sheet thinner in the late Wisconsinan than now? Nature 317, 797–799. https://doi.org/10.1038/317797a0

Reimer, P.J. & Reimer, R.W. 2001: A marine reservoir correction database and on-line interface. Radiocarbon 43, 461–463. https://doi.org/10.1017/S0033822200038339

Reimer, P.J. et al. 2020: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757. https://doi.org/10.1017/RDC.2020.41

Rogozhina, I. et al. 2016: Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nature Geoscience 9, 366–369. https://doi.org/10.1038/ngeo2689

Rosentau, A. et al. 2021: A Holocene relative sea-level database for the Baltic Sea. Quaternary Science Reviews 266, 107071. https://doi.org/10.1016/j.quascirev.2021.107071

Rovere, A. et al. 2016: The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: reconstructing sea-level in a warmer world. Earth-Science Reviews 159, 404–427. https://doi.org/10.1016/j.earscirev.2016.06.006

Rubin, M. & Alexander, C. 1960: U. S. Geological survey radiocarbon dates V. Radiocarbon 2, 129–185. https://doi.org/10.1017/S1061592X00020652

Sbarra, C.M., Briner, J.P., Graham, B.L., Poinar, K., Thomas, E.K. & Young, N.E. 2022: Evidence for a more extensive Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum. Geosphere 18, 1316–1329. https://doi.org/10.1130/GES02432.!

Schaffer, J., Timmermann, R., Arndt, J.E., Kristensen, S.S., Mayer, C., Morlighem, M. & Steinhage, D. 2016: A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data 8, 543–557. https://doi.org/10.5194/essd-8-543-2016

Simon, Q., Hillaire-Marcel, C., St-Onge, G. & Andrews, J.T. 2014: North-eastern Laurentide, western Greenland and southern Innuitian ice stream dynamics during the last glacial cycle. Journal of Quaternary Science 29, 14–26. https://doi.org/10.1002/jqs.2648

Simpson, M.J.R., Milne, G.A., Huybrechts, P. & Long, A.J. 2009: Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews 28, 1631–1657. https://doi.org/10.1016/j.quascirev.2009.03.004

Sloss, C.R. & Murray-Wallace, C.V., Jones, B.G. 2007: Holocene sea-level change on the southeast coast of Australia: a review. The Holocene 17, 999–1014. https://doi.org/10.1177/0959683607082415

Souza, P.E., Sohbati, R., Murray, A.S., Clemmensen, L.B., Kroon, A. & Nielsen, L. 2021: Optical dating of cobble surfaces determines the chronology of Holocene beach ridges in Greenland. Boreas 50, 606–618. https://doi.org/10.1111/bor.12507

Spada, G. & Stocchi, P. 2007: SELEN: a Fortran 90 program for solving the ‘sea-level equation’. Computers & Geosciences 33, 538–562. https://doi.org/10.1016/j.cageo.2006.08.006

Sparrenbom, C.J., Bennike, O., Björck, S. & Lambeck, K. 2006a: Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35, 171–187. https://doi.org/10.1111/j.1502-3885.2006.tb01148.x

Sparrenbom, C.J., Bennike, O., Björck, S. & Lambeck, K. 2006b: Relative sea-level changes since 15 000 cal. yr BP in the Nanortalik area, southern Greenland. Journal of Quaternary Science 21, 29–48. https://doi.org/10.1002/jqs.940

Steffen, R., Steffen, H., Weiss, R., Lecavalier, B.S., Milne, G.A., Woodroffe, S.A. & Bennike, O. 2020: Early Holocene Greenland-ice mass loss likely triggered earthquakes and tsunami. Earth and Planetary Science Letters 546, 116443. https://doi.org/10.1016/j.epsl.2020.116443

Storms, J.E.A., de Winter, I.L., Overeem, I., Drijkoningen, G.G. & Lykke-Andersen, H. 2012: The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quaternary Science Reviews 35, 29–50. https://doi.org/10.1016/j.quascirev.2011.12.014

Street, F.A. 1977: Deglaciation and Marine Paleoclimates, Schuchert Dal, Scoresby Sund, East Greenland. Arctic and Alpine Research 9, 421–426. https://doi.org/10.1080/00040851.1977.12003935

Strunk, A., Larsen, N.K., Nilsson, A., Seidenkrantz, M.S., Levy, L.B., Olsen, J. & Lauridsen, T.L. 2018: Relative sea-level changes and ice sheet history in Finderup Land, North Greenland. Frontiers in Earth Science 6, 1–15. https://doi.org/10.3389/feart.2018.00129

Stuiver, M. & Polach, H.A. 1977: Discussion reporting of 14C data. Radiocarbon 19, 355–363. https://doi.org/10.1017/S0033822200003672

Tarasov, L. & Peltier, W.R. 2002: Greenland glacial history and local geodynamic consequences. Geophysical Journal International 150, 198–229. https://doi.org/10.1046/j.1365-246X.2002.01702.x

Tauber, H. 1960: Copenhagen radiocarbon dates IV. Radiocarbon 2, 12–25. https://doi.org/10.1017/S1061592X00020561

Tauber, H. 1961: Danske kulstof-14 dateringsresultater I (Danish carbon-14 dating results I). Meddelelser fra Dansk Geologisk Forening 14, 386–405. https://2dgf.dk/xpdf/bull-1961-14-4-386-405.pdf (accessed February 2023).

Tauber, H. 1964: Copenhagen radiocarbon dates VI. Radiocarbon 6, 215–225. https://doi.org/10.1017/S0033822200010699

Tauber, H. 1966: Copenhagen radiocarbon dates VII. Radiocarbon 8, 213–234. https://doi.org/10.1017/S0033822200000126

Tauber, H. & Funder, S. 1975: C14 content of recent molluscs from Scoresby Sund, central East Greenland. Rapport Grønlands Geologiske Undersøgelse 75, 95–99. https://doi.org/10.34194/rapggu.v75.7460

Ten Brink, N.W. 1975: Holocene history of the Greenland ice sheet based on radiocarbon-dated moraines in West Greenland. Bulletin Grønlands Geologiske Undersøgelse 113, 1–44. https://doi.org/10.34194/bullggu.v113.6654

Ten Brink, N.W. & Weidick, A. 1974: Greenland ice sheet history since the last glaciation. Quaternary Research 4, 429–440. https://doi.org/10.1016/0033-5894(74)90038-6

Trautman, M.A. 1963: Isotopes, Inc. Radiocarbon measurements III. Radiocarbon 5, 62–79. https://doi.org/10.1017/S0033822200036791

Vacchi, M., Engelhart, S.E., Nikitina, D., Ashe, E.L., Peltier, W.R., Roy, K., Kopp, R.E. & Horton, B.P. 2018: Postglacial relative sea-level histories along the eastern Canadian coastline. Quaternary Science Reviews 201, 124–146. https://doi.org/10.1016/j.quascirev.2018.09.043

van Tatenhove, F.G.M., van der Meer, J.J.M. & Koster, E.A. 1996: Implications for deglaciation chronology from new AMS age determinations in Central West Greenland. Quaternary Research 45, 245–253. https://doi.org/10.1006/qres.1996.0025

Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G. 2007: Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews 26, 3249–3275. https://doi.org/10.1016/j.quascirev.2007.07.014

Vinther, B.M. et al. 2009: Holocene thinning of the Greenland ice sheet. Nature 461, 385–388. https://doi.org/10.1038/nature08355

Washburn, A.L. & Stuiver, M. 1962: Radiocarbon-dated postglacial delevelling in Northeast Greenland and its implications. Arctic 15, 66–73. https://doi.org/10.14430/arctic3558

Weidick, A. 1968: Observations on some Holocene glacier fluctuations in West Greenland. Bulletin Grønlands Geologiske Undersøgelse 73, 1–202. https://doi.org/10.34194/bullggu.v73.6611

Weidick, A. 1972a: C14 dating of survey material performed in 1971. Rapport Grønlands Geologiske Undersøgelse 45, 58–67. https://doi.org/10.34194/rapggu.v45.7303

Weidick, A. 1972b: Holocene shore-lines and glacial stages in Greenland – an attempt at correlation. Rapport Grønlands Geologiske Undersøgelse 41, 1–39. https://doi.org/10.34194/rapggu.v41.7281

Weidick, A. 1973: C14 dating of survey material performed in 1972. Rapport Grønlands Geologiske Undersøgelse 55, 66–75. https://doi.org/10.34194/rapggu.v55.7356

Weidick, A. 1974: C14 dating of survey material performed in 1973. Rapport Grønlands Geologiske Undersøgelse 66, 42–45. https://doi.org/10.34194/rapggu.v66.7402

Weidick, A. 1975: C14 dating of survey material performed in 1974. Rapport Grønlands Geologiske Undersøgelse 75, 19–20. https://doi.org/10.34194/rapggu.v75.7436

Weidick, A. 1976: C14 dating of survey material carried out in 1975. Rapport Grønlands Geologiske Undersøgelse 80, 136–144. https://doi.org/10.34194/rapggu.v80.7507

Weidick, A. 1977: C14 dating of survey material carried out in 1976. Rapport Grønlands Geologiske Undersøgelse 85, 127–129. https://doi.org/10.34194/rapggu.v85.7545

Weidick, A., Bennike, O., Citterio, M. & Nørgaard-Pedersen, N. 2012: Neoglacial and historical glacier changes around Kangersuneq fjord in southern West Greenland. Geological Survey of Denmark and Greenland Bulletin 27, 1–68. https://doi.org/10.34194/geusb.v27.4694

Wessel, P. & Smith, W.H.F. 1996: A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth 101, 8741–8743. https://doi.org/10.1029/96JB00104

Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F. & Tian, D. 2019: The generic mapping tools Version 6. Geochemistry, Geophysics, Geosystems 20, 5556–5564. https://doi.org/10.1029/2019GC008515

Woodroffe, S.A., Long, A.J., Lecavalier, B.S., Milne, G.A. & Bryant, C.L. 2014: Using relative sea-level data to constrain the deglacial and Holocene history of southern Greenland. Quaternary Science Reviews 92, 345–356. https://doi.org/10.1016/j.quascirev.2013.09.008

Yang, H. et al. 2022: Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet. PLoS One 17, e0259816. https://doi.org/10.1371/journal.pone.0259816

Maps of Greenland through time

Published

13-11-2023

How to Cite

Gowan, E. J. (2023). Paleo sea-level indicators and proxies from Greenland in the GAPSLIP database and comparison with modelled sea level from the PaleoMIST ice-sheet reconstruction. GEUS Bulletin, 53. https://doi.org/10.34194/geusb.v53.8355

Issue

Section

RESEARCH ARTICLE