Transport of nitrate-containing groundwater to coastal areas through buried tunnel valleys, Denmark

Authors

DOI:

https://doi.org/10.34194/geusb.v53.8351

Keywords:

Submarine groundwater discharge, redox modelling, buried tunnel valleys, nitrate in groundwater, nutrient flux to the marine environment

Abstract

Nitrogen impact on the aquatic environment, including coastal areas, is too high in many countries worldwide, particularly in areas with intensive agriculture. Efficient mitigation initiatives demand that important pathways and the fate of nitrate in the hydrological cycle are known. In this study, we focus on groundwater nitrate contamination in two near-shore catchment areas in north-west Denmark. Groundwater in the area is mainly located in buried tunnel valleys, which are subsurface structures eroded by meltwater during Pleistocene glaciations in former glaciated areas. Groundwater samples from the aquifers inside the buried valleys reveal the presence of up to 120 mg/l nitrate down to 10 m below sea level and about 1 km down from the stream outlet towards the coast. We interpret the complex tunnel-valley infill to be responsible for the spatial heterogeneity of the groundwater geochemistry, where sandy geological windows create localised hydraulic pathways and complex redox structures. Groundwater and stream water chemistry in the study area clearly demonstrate the role of groundwater in nitrate transport within the catchment as well as the direct pathway to the coast bypassing the stream and riverine systems. Our results show that the buried tunnel valleys potentially contribute to submarine groundwater discharge and therefore could be responsible for a hitherto unaccounted input of nitrogen to the marine environment.

Downloads

Download data is not yet available.

References

Aarhus University 2021: tTEM Mapping Salling, HydroGeophysics Group, Unpublished Report, 19042021, March 2021.

Adhikari, K., Hartemink, A.E., Minasny, B., Kheir, R.B., Greve, M.B. & Greve, M.H. 2014: Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9(8), e105519. https://doi.org/10.1371/journal.pone.0105519

Adhikari, K., Kheir, R.B., Greve, M.B., Bøcher, P.K., Malone, B.P., Minasny, B., McBratney, A.B. & Greve, M.H. 2013: High resolution 3-D mapping of soil texture in Denmark. Soil Science Society of America Journal 77(3), 860–876. https://doi.org/10.2136/sssaj2012.0275

Andersen, M.S., Baron, L., Gudbjerg, J., Gregersen, J., Chapellier, D., Jakobsen, R. & Postma, D. 2007: Discharge of nitrate-containing groundwater into a coastal marine environment. Journal of Hydrology 336, 98–114. https://doi.org/10.1016/j.jhydrol.2006.12.023

Andersen, T.R., Huuse, M., Jørgensen, F. & Christensen, S. 2012: Seismic investigations of buried tunnel valleys on- and offshore Denmark. In: Huuse, M. et al. (eds): Glaciogenic Reservoirs and Hydrocarbon Systems. London: Geological Society, Special Publications 368. https://doi.org/10.1144/sp368.12

Andersen, T.R., Jørgensen, F. & Christensen, S. 2016: Delineation of tunnel valleys across the North Sea coastline, Denmark based on reflection seismic data, boreholes, TEM and Schlumberger soundings. ASEG Extended Abstracts 2016 1, 1–10. Extended Abstract. https://doi.org/10.1071/aseg2016ab122

Andersen, T.R., Poulsen, S.E., Christensen, S. & Jørgensen, F. 2013: A synthetic study of geophysics-based modelling of groundwater flow in catchments with a buried valley. Hydrogeology Journal 21, 491–503, https://doi.org/10.1007/s10040-012-0924-5

Appelo, C.A.J. & Postma, D. (eds) 2005: Geochemistry, Groundwater and Pollution. Second Edition. London: CRC Press. https://doi.org/10.1201/9781439833544

Auken, E., Foged, N., Larsen, J.J., Lassen, K.V.T., Maurya, P.K., Dath, S.M. & Eiskjær, T.T. 2019: tTEM – A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of the subsurface. Geophysics 84(1), https://doi.org/10.1190/geo2018-0355.1

Bieroza, M.Z., Heathwaite, A.L., Bechmann, M., Kyllmar, K. & Jordan, P. 2018: The concentration-discharge slope as a tool for water quality management. Science of the Total Environment 630, 738–749. https://doi.org/10.1016/j.scitotenv.2018.02.256

Bishop, J.M., Glenn, C.R., Amato, D.V. & Dulai, H. 2017: Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. Journal of Hydrology: Regional Studies 11, 194–218. https://doi.org/10.1016/j.ejrh.2015.10.008

Brookfield, A.E., Hansen, A.T., Sullivan, P.L., Czuba, J.A., Kirk, M.F., Li, L., Newcomer, M.E. & Wilkinson, G. 2021: Predicting algal blooms: Are we overlooking groundwater? Science of the Total Environment 769, 144442. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.144442

Cantarero, D.L.M., Blanco, A., Cardenas, M.B., Nadaoka, K. & Siringan, F.P. 2019: Offshore submarine groundwater discharge at a coral reef front controlled by faults. Geochemistry, Geophysics, Geosystems 20, 3170–3185. https://doi.org/10.1029/2019GC008310

Christiansen, A.V. & Auken, E. 2012: A global measure for depth of investigation. Geophysics 4, 77. https://doi.org/10.1190/geo2011-0393.1

Christiansen, A.V., Auken, E. & Sørensen, K.I. 2006: The transient electromagnetic method. In: Kirsch, R. (ed.): Groundwater Geophysics. A Tool for Hydrogeology, 179–224. Berlin: Springer Verlag. https://doi.org/10.1007/3-540-29387-6_6

Dalgaard, T. et al. 2014: Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters 9, 115002. https://doi.org/10.1088/1748-9326/9/11/115002

Danielsen, J.E., Auken, E., Jørgensen, F., Søndergaard, V.H. & Sørensen, K.I. 2003: The application of the transient electromagnetic method in hydrogeophysical surveys. Journal of Applied Geophysics 53, 181–198. https://doi.org/10.1016/j.jappgeo.2003.08.004

Danish Agricultural Agency 2018: Internet Field Maps, 2018. https://lbst.dk/landbrug/kort-og-markblokke/markkort-og-markblokke/ (accessed April 2023).

Danish Environmental Protection Agency 2023: Water management plans 2021–2027; The Danish Environmental Protection Agency. https://eng.mst.dk/nature-water/aquatic-environment/water-and-management-plans/ (accessed April 2023).

DEFRA 2016: Implementation of the Nitrate Pollution Regulations 2015 in England. Method for designating Nitrate Vulnerable Zones for waters affected by eutrophication. December 2016. Department for Environment, Food & Rural Affairs Report, 59 p. www.gov.uk/government/publications (accessed April 2023).

De Vries, W. et al. 2011: Geographical variation in terrestrial nitrogen budgets across Europe. In: Sutton, M.A. et al.: The European Nitrogen Assessment 317–344, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511976988.018

Diaz, R.J. & Rosenberg, R. 2008: Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929. https://doi.org/10.1126/science.115640

DMI 2023: Klimanormaler for Danmark. Referenceværdier (2011–2020). https://www.dmi.dk/vejrarkiv/normaler-danmark/ (accessed April 2023).

Duque, C., Jessen, S., Tirado-Conde, J., Karan, S. & Engesgaard, P. 2019: Application of stable isotopes of water to study coupled submarine groundwater discharge and nutrient delivery. Water 11(9), 1842. https://doi.org/10.3390/w11091842

Edmunds, W.M., Hinsby, K., Marlin, C., Condesso de Melo, M.T., Manzano, M., Vaikmaee, R. & Travi, Y. 2001: Evolution of groundwater systems at the European coastline. In: Edmunds, W.M. & Milne, C.J. (eds): Palaeowaters in Coastal Europe: evolution of groundwater since the late Pleistocene. London: Geological Society, Special Publications 189, 289–311. https://doi.org/10.1144/gsl.sp.2001.189.01.17

Erisman, J.W., van Grinsven, H., Grizzetti, B., Bouraoui, F., Powlson, D., Sutton, M.A., Bleeker, A. & Reis, S. 2011: The European nitrogen problem in a global perspective. In: Sutton, M.A. et al. (eds): The European Nitrogen Assessment 9–31, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511976988.005

Gertz, F., Thostrup, L.K., Zacho, S.P., Jensen, M.L. & Piil, K. 2018: Miljøtilstanden i Skive Fjord, Lovns Bredning og Risgårde Bredning. SEGES Report, 58 pp. https://www.landbrugsinfo.dk/-/media/landbrugsinfo/public/1/3/1/rapport_miljotilstand_skive_fjord.pdf (accessed December 2018).

GEUS (Geological Survey of Denmark and Greenland) 2022: Jupiter boringsdatabasen. Data set. GEUS Dataverse, V2. https://doi.org/10.22008/FK2/8YYXXN (accessed May 2022).

Godsey, S.E., Kirchner, J.W. & Clow, D.W. 2009: Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes 23(13), 1844–1864. https://doi.org/10.1002/hyp.7315

Haider, K., Engesgaard, P., Sonnenborg, T.O. & Kirkegaard, C. 2015: Numerical modeling of salinity distribution and submarine groundwater discharge to a coastal lagoon in Denmark based on airborne electromagnetic data. Hydrogeology Journal 23, 217–233. https://doi.org/10.1007/s10040-014-1195-0

Hansen, B., Thorling, L., Schullehner, J., Termansen, M. & Dalgaard, T. 2017: Groundwater nitrate response to sustainable nitrogen management. Scientific Reports 7(1), 8566. https://doi.org/10.1038/s41598-017-07147-2

Hansen, B. et al. 2021: Assessment of complex subsurface redox structures for sustainable development of agriculture and the environment. Environmental Research Letters 16, 025007. https://doi.org/10.1088/1748-9326/abda6d

Hansen, M. & Pjetursson, B. 2011: Free, online Danish shallow geological data. Geological Survey of Denmark and Greenland Bulletin 23, 53–56. https://doi.org/10.34194/geusb.v23.4842

Hill, A.R. 2019: Groundwater nitrate removal in riparian buffer zones: A review of research progress in the past 20 years. Biogeochemistry 143, 347–369. https://doi.org/10.1007/s10533-019-00566-5

Hill, A.R., Devito, K.J. & Vidon, P.G. 2014: Long-term nitrate removal in a stream riparian zone. Biogeochemistry 121, 425–439, https://doi.org/10.1007/s10533-014-0010-2

Hinsby, K., Harrar, W.G., Nyegaard, P., Konradi, P.B., Rasmussen, E.S., Bidstrup, T., Gregersen, U. & Boaretto, E. 2001: The Ribe Formation in western Denmark – Holocene and Pleistocene groundwaters in a coastal Miocene sand aquifer. In: Edmunds, W.M. & Milne, C.J. (eds): Palaeowaters in Coastal Europe: Evolution of groundwater since the late Pleistocene. London: Geological Society, Special Publications 189, 29–48. https://doi.org/10.1144/gsl.sp.2001.189.01.04

Houmark-Nielsen, M. 2011: Pleistocene glaciations in Denmark: A closer look at chronology, ice dynamics and landforms. Developments in Quaternary Science 15, 47–58. https://doi.org/10.1016/b978-0-444-53447-7.00005-2

Jakobsen, P.R., Tougaard, L. & Anthonsen, K.L. 2022: Danmarks digitale jordartskort 1:25000. Version 6.0. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2021/68. https://doi.org/10.22008/gpub/34628

Jørgensen, F. & Sandersen, P. 2006: Buried and open tunnel valleys in Denmark – Erosion beneath multiple ice sheets. Quaternary Science Reviews 25, 1339–1363. https://doi.org/10.1016/j.quascirev.2005.11.006

Kim, H., Dietrich, W.E., Thurnhoffer, B.M., Bishop, J.K.B. & Fung, I.Y. 2017: Controls on solute concentration-discharge relationships revealed by simultaneous hydrochemistry observations of hillslope runoff and stream flow: The importance of critical zone structure. Water Resources Research 53(2), 5375–5377. https://doi.org/10.1002/2016WR019722

Kim, H., Høyer, A.-S., Jakobsen, R., Thorling, L., Aamand, J., Maurya, P.K., Christiansen, A.V. & Hansen, B. 2019: 3D characterization of the subsurface redox architecture in complex geological settings. Science of the Total Environment 693, 133583. https://doi.org/10.1016/j.scitotenv.2019.133583

Kim, H., Sandersen, P.B.E., Jakobsen, R., Kallesøe, A.J., Claes, N., Blicher-Mathiesen, G., Foged, N., Aamand, J. & Hansen, B. 2021: A 3D hydrogeochemistry model of nitrate transport and fate in a glacial sediment catchment: A first step toward a numerical model. Science of The Total Environment 776, 146041. https://doi.org/10.1016/j.scitotenv.2021.146041

Kroeger, K.D. & Charette, M.A. 2008: Nitrogen biogeochemistry of submarine groundwater discharge. Limnology and Oceanography 53(3), 1025–1039. https://doi.org/10.4319/lo.2008.53.3.1025

Levin, G. et al. 2014: Estimating land use/land cover changes in Denmark from 1990 – 2012. Technical report no. 38. DCE – Danish Center for Environment and Energy. ISBN: 978-87-7156-075-6; ISSN: 2245-019X

Luijendijk, E., Gleeson, T. & Moosdorf, N. 2020: Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature Communications 11, 1260. https://doi.org/10.1038/s41467-020-15064-8

Lutz, S.R., Trauth, N., Musolff, A., Van Breukelen, B.M., Knöller, K. & Fleckenstein, J.H. 2020: How important is denitrification in riparian zones? Combining end–member mixing and isotope modeling to quantify nitrate removal from riparian groundwater. Water Resources Research 56, e2019WR025528. https://doi.org/10.1029/2019WR025528

Micallef, A. et al. 2020: Offshore freshened groundwater in continental margins. Reviews of Geophysics 58, e2020RG000706. https://doi.org/10.1029/2020RG000706

Rasmussen, E.S., Dybkjær, K. & Piasecki, S. 2010: Lithostratigraphy of the upper Oligocene – Miocene succession of Denmark. Geological Survey of Denmark and Greenland Bulletin 22, 1–92. https://doi.org/10.34194/geusb.v22.4733

Sandersen, P. & Jørgensen, F. 2003: Buried Quaternary valleys in western Denmark – Occurrence and inferred implications for groundwater resources and vulnerability. Journal of Applied Geophysics 53(4), 229–249. https://doi.org/10.1016/j.jappgeo.2003.08.006

Sandersen, P.B.E. & Jørgensen, F. 2016a: Kortlægning af begravede dale i Danmark. Opdatering 2010–2015. Bind 1: Hovedrapport. (Særudgivelse). In Danish. Copenhagen: Geological Survey of Denmark and Greenland. Special publication. https://www.begravededale.dk/2015-rapport.htm (accessed April 2023).

Sandersen, P.B.E. & Jørgensen, F. 2016b: Kortlægning af begravede dale i Danmark. Opdatering 2010–2015. Bind 2. Lokalitetsbeskrivelser In Danish. Copenhagen: Geological Survey of Denmark and Greenland. Special publication. https://www.begravededale.dk/2015-rapport.htm (accessed April 2023).

Sandersen, P.B.E. & Jørgensen, F. 2017: Buried tunnel valleys in Denmark and their impact on the geological architecture of the subsurface. Geological Survey of Denmark and Greenland Bulletin 38, 13–16. https://doi.org/10.34194/geusb.v38.4388

Sandersen, P.B.E. & Jørgensen, F. 2022: Tectonic impact on Pleistocene and Holocene erosional patterns in a formerly glaciated intra-plate area. Quaternary Science Reviews 293, 107681. https://doi.org/10.1016/j.quascirev.2022.107681

Sandersen, P.B.E. & Kallesøe, A.J. 2021: Geological mapping in MapField LOOP-areas and demo sites. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2021(36). https://doi.org/10.22008/gpub/34596

Sandersen, P.B.E, Kallesøe, A.J., Møller, I, Høyer, A.-S., Jørgensen, F., Pedersen, J.B. & Christiansen, A.V. 2021: Utilizing the towed Transient ElectroMagnetic method (tTEM) for achieving unprecedented near-surface detail in geological mapping. Engineering Geology 288, 106125. https://doi.org/10.1016/j.enggeo.2021.106125

Santos, I.R. et al. 2021: Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat Rev Earth Environ 2, 307–323. https://doi.org/10.1038/s43017-021-00152-0

Sørensen, K.I. & Auken, E. 2004: SkyTEM – A new high-resolution helicopter transient electromagnetic system. Exploration Geophysics 35, 194–202. https://doi.org/10.1071/EG04194

Szymczycha, B., Kłostowska, Ż., Lengier, M. & Dzierzbicka-Głowacka, L. 2020: Significance of nutrient fluxes via submarine groundwater discharge in the Bay of Puck, southern Baltic Sea. Oceanologia 62(2), 117–125. https://doi.org/10.1016/j.oceano.2019.12.004

Taniguchi, M., Dulai, H., Burnett, K.M., Santos, I.R., Sugimoto, R., Stieglitz, T., Kim, G., Moosdorf, N. & Burnett, W.C. 2019: Submarine groundwater discharge: Updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Frontiers in Environmental Science 7, 141. https://doi.org/10.3389/fenvs.2019.00141

van der Vegt, P., Janszen, A. & Moscariello, A. 2012: Tunnel valleys: Current knowledge and future perspectives. In: Huuse, M. et al. (eds): Glaciogenic Reservoirs and Hydrocarbon Systems. London: Geological Society, Special Publications 368, 75–97. https://doi.org/10.1144/SP368.13

Zamrsky, D., Essink, G.O., Sutanudjaja, E.H., van Beek, L.P.H. & Bierkens, M.F.P. 2022: Offshore fresh groundwater in coastal unconsolidated sediment systems as a potential fresh water source in the 21st century. Environmental Research Letters 17(1), 014021. https://doi.org/10.1088/1748-9326/ac4073

Maps

Published

27-11-2023

How to Cite

Sandersen, P. B., Kim, H., Jacobsen, R., Pedersen, J. B., & Hansen, B. G. (2023). Transport of nitrate-containing groundwater to coastal areas through buried tunnel valleys, Denmark. GEUS Bulletin, 53. https://doi.org/10.34194/geusb.v53.8351

Issue

Section

RESEARCH ARTICLE