Petrology of the Skaergaard Layered Series

Authors

DOI:

https://doi.org/10.34194/geusb.v56.8327

Keywords:

Cumulate, gabbro, Greenland, layered intrusion, phase layering

Abstract

The Skaergaard intrusion is a layered, ferrobasaltic intrusion emplaced during the Early Eocene into the rifting volcanic margin of East Greenland. The magma chamber crystallised in response to cooling from the roof and margins upwards and inward, forming upper, marginal and bottom series, the latter referred to as the Layered Series. The phase layering in the bottom series suggests an evolved, olivine-normative tholeiitic melt saturated in plagioclase and olivine, followed by augite, and then simultaneously by ilmenite and magnetite forming primocrysts. Pigeonite appears in the lower parts and continues until the centre of the series. Apatite appears in the upper part concurrently with liquid immiscibility. Cryptic variations of the individual primocrysts record a systematic upward increase in iron and decrease in magnesium for the mafic minerals and a systematic increase in sodium and decrease in calcium for plagioclase. The appearance of pigeonite is caused by reactions and crystallisation in the trapped melt and by subsolidus adjustments without this phase reaching liquidus saturation. The high mode of olivine at the base of the upper part with the appearance of apatite is interpreted to mark the onset of liquid immiscibility. This may have led to the separation of conjugate melts with granophyre migrating upward and the basic component largely staying stationary or sinking. Petrologic and geochemical observations indicate differentiation in the lower part of the intrusion, principally controlled by crystal fractionation with the efficiency of fractionation controlled by the evolution and escape of liquid from the solidifying mush. During the final stages of solidification, the onset of liquid immiscibility and termination of melt convection impeded differentiation. Modelling by perfect Rayleigh fractionation shows that major and included trace elements conform reasonably to observations, while excluded elements deviate from model predictions. This decoupling is caused by the mobility of a granophyre component formed in the trapped melt and in the main residual magma chamber. Consequently, the sampled gabbros may not be representative of the final solid-melt mush. By restoring the gabbros to their original mush compositions, it is possible to constrain granophyre migration pathways. We suggest that the granophyre formed in the trapped melt in the lower part of the intrusion mostly migrated laterally through pressure release pathways to form lenses and pockets with only limited upward migration into the main magma reservoir. Near the end stage of differentiation, the residual magma exsolved and formed complex mixtures of ferrobasaltic and granophyric melts. Estimates predict that a substantial amount of the granophyric melt penetrated as sills into the downward crystallising, upper part of the body as well as into the host rocks. The redistribution of granophyric melts within the solidifying crystal mush complicates predictions of trapped-melt content and mass-balance calculations but helps to explain apparent decoupling of included and excluded trace elements, especially towards the end stages of evolution. Final crystallisation was controlled mostly by in situ crystallisation leaving complex mixtures of ferrodiorite and granophyre components. 

Downloads

Download data is not yet available.

References

Almeev, R.R., Holtz, F., Koepke, J., Parat, F. & Botcharnikov, R.E. 2007: The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa. American Mineralogist 92, 670–674. https://doi.org/10.2138/am.2007.2484

Almeev, R.R., Holtz, F., Koepke, J. & Parat, F. 2012: Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa. American Mineralogist 97, 1234–1240. https://doi.org/10.2138/am.2012.4100

Andersen, D.J., Lindsley, D.H. & Davidson, P.M. 1993: QUILF: a PASCAL program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences 19, 1333–1350. https://doi.org/10.1016/0098-3004(93)90033-2

Andersen, J.C.Ø. 1996: The Skaergaard intrusion and the Platinova gold and palladium deposit, Kangerlussuaq area, East Greenland. Unpublished PhD dissertation, University of Copenhagen.

Andersen, J.C.Ø. 2006: Postmagmatic sulphur loss in the Skaergaard intrusion: Implications for the formation of the Platinova Reef. Lithos 92, 198–221. https://doi.org/10.1016/j.lithos.2006.03.033

Andersen, J.C.Ø., Rasmussen, H., Nielsen, T.F.D. & Rønsbo, J.G. 1998: The Triple Group and the Platinova gold and palladium reefs in the Skaergaard intrusion; stratigraphic and petrographic relations. Economic Geology 93, 488–509. https://doi.org/10.2113/gsecongeo.93.4.488

Andreasen, R., Peate, D.W. & Brooks, C.K. 2004: Magma plumbing systems in large igneous provinces: Inferences from cyclical variations in Palaeogene East Greenland basalts. Contributions to Mineralogy and Petrology 147, 438–452. https://doi.org/10.1007/s00410-004-0566-2

Ariskin, A.A. 2002: Geochemical thermometry of the Layered Series rocks of the Skaergaard intrusion. Petrology 10, 495–518.

Ariskin, A.A. 2003: The compositional evolution of differentiated liquids from the Skaergaard Layered Series as determined by geochemical thermometry. Russian Journal of Earth Sciences 5, 1–29. https://doi.org/10.2205/2003ES000115

Atkins, F.B. 1969: Pyroxenes of the Bushveld intrusion. South Africa. Journal of Petrology 10, 222–249. https://doi.org/10.1093/petrology/10.2.222

Bachmann, O., Miller, C.F. & de Silva, S.L. 2007: The volcanic-plutonic connection as a stage for understanding crustal magmatism. Journal of Volcanology and Geothermal Research 167, 1–23. https://doi.org/10.1016/j.jvolgeores.2007.08.002

Bacon, C.R. & Hirschmann, M.M. 1988: Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. American Mineralogist 73, 57–61.

Barfod., G.H., Otero, O. & Albarède, F. 2003: Phosphate Lu-Hf geochronology. Chemical Geology 200, 241–253. https://doi.org/10.1016/S0009-2541(03)00202-X

Barker, D.S. 1970: Composition of granophyre, myrmekite, and graphic granite. Geological Society of America Bulletin 81, 3339–3350. https://doi.org/10.1130/0016-7606(1970)81[3339:COGMAG]2.0.CO;2

Barnes, S.J. 1986: The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology 93, 524–531. https://doi.org/10.1007/BF00371722

Barnes, S.J. & Naldrett, A.J. 1986: Geochemistry of the J-M reef of the Stillwater Complex, Minneapolis Adit Area. II. Silicate mineral chemistry and petrogenesis. Journal of Petrology 27, 791–825. https://doi.org/10.1093/petrology/27.4.791

Basaltic Volcanism Study Project 1981: Basaltic Volcanism of the Terrestrial Planets. New York: Pergamon Press.

Beard, J.S. & Lofgren, G.E. 1989: Effect of water on the composition of partial melts of greenstone and amphibolite. Science 244, 195–197. https://doi.org/10.1126/science.244.4901.195

Bédard, J.H. 2005: Partitioning coefficients between olivine and silicate melts. Lithos 83, 394–419. https://doi.org/10.1016/j.lithos.2005.03.011

Bédard, J.H. 2006: Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta 70, 3717–3742. https://doi.org/10.1016/j.gca.2006.05.003

Bédard, J.H. 2007: Trace element partitioning coefficients between silicate melts and orthopyroxene: parameterizations of D variations. Chemical Geology 244, 263–303. https://doi.org/10.1016/j.chemgeo.2007.06.019

Bédard, J.H. 2014: Parametrizations of calcic clinopyroxene – melt trace element partition coefficients. Geochemistry, Geophysics, Geosystems 15, 303–336. https://doi.org/10.1002/2013GC005112

Bédard, J.H. 2015: Ophiolitic Magma Chamber Processes, a perspective from the Canadian Appalachians. In: Charlier, B. et al. (eds): Layered Intrusions, 693–732. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9652-1_15

Bence, A.E. & Papike, J.J. 1972: Pyroxenes as recorders of lunar basalt petrogenesis: chemical trends due to crystal-liquid interaction. Proceedings Lunar Science Conference 3, 431–469.

Berndt, J., Koepke, J. & Holtz, F. 2005: An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology 46, 135–167. https://doi.org/10.1093/petrology/egh066

Biggar, G.M. 1974: Phase equilibrium studies of the chilled margins of some layered intrusions. Contributions to Mineralogy and Petrology 46, 159–167. https://doi.org/10.1007/BF00377502

Bindeman, I.N., Brooks, C.K., McBirney, A.R. & Taylor, H.P. 2008: The low-δ18O late-stage ferrodiorite magmas in the Skaergaard Intrusion: result of liquid immiscibility, thermal metamorphism, or meteoric water incorporation into magma? Journal of Geology 116, 571–586. https://doi.org/10.1086/591992

Bird, D.K., Rogers, R.D. & Manning, C.E. 1986: Mineralized fracture systems of the Skaergaard intrusion, East Greenland. Meddelelser om Grønland. Geoscience 16, 68 pp.

Bird, D.K., Manning, C.E. & Rose, N.M. 1988: Hydrothermal alteration of Tertiary layered gabbros, East Greenland. American Journal of Science 288, 405–457. https://doi.org/10.2475/ajs.288.5.405

Bird, D.K., Brooks, C.K., Gannicott, R.A. & Turner, P.A. 1991: A gold-bearing horizon in the Skaergaard Intrusion, East Greenland. Economic Geology 86, 1083–1092. https://doi.org/10.2113/gsecongeo.86.5.1083

Blundy, J. & Wood, B.J. 1994: Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454. https://doi.org/10.1038/372452a0

Bollingberg, K. 1995: Textural and Chemical Evolution of the Fe-Ti Oxide Minerals During Late- and Post Magmatic Cooling of the Skærgaard Intrusion, East Greenland. MS thesis, University of Copenhagen, 157 pp.

Botcharnikov, R.E., Almeev, R.R., Koepke, J. & Holtz, F. 2008: Phase relations and liquid lines of descent in hydrous ferrobasalt – implications for the Skaergaard Intrusion and Columbia River flood basalts. Journal of Petrology 49, 1687–1727. https://doi.org/10.1093/petrology/egn043

Bottinga, Y. & Weill, D.F. 1970: Densities of liquid silicate systems calculated from partial molar volumes of oxide components. American Journal of Science 269, 169–182. https://doi.org/10.2475/ajs.269.2.169

Bottinga, Y. & Weill, D.F. 1972: The viscosity of magmatic silicate liquids; a model calculation. American Journal of Science 272, 438–475. https://doi.org/10.2475/ajs.272.5.438

Bottinga, Y., Weill, D. & Richet, P. 1982: Density calculations for silicate liquids. 1. Revised method for aluminosilicate compositions. Geochimica et Cosmochimica Acta 46, 909–919. https://doi.org/10.1016/0016-7037(82)90047-3

Boudreau, A.E. & McBirney, A.R. 1997: The Skaergaard layered series. Part III. Non-dynamic layering. Journal of Petrology 38, 1003–1020. https://doi.org/10.1093/petroj/38.8.1003

Boudreau, A.E. & McCallum, I.S. 1992: Concentration of platinum-group elements by magmatic fluids in layered intrusions. Economic Geology 87, 1830–1848. https://doi.org/10.2113/gsecongeo.87.7.1830

Bowen, N.L. 1928: The Evolution of the Igneous Rocks. Princeton University Press, Princeton, 332 pp.

Brooks, C.K. 1969: On the distribution of zirconium and hafnium in the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta 33, 357–374. https://doi.org/10.1016/0016-7037(69)90168-9

Brooks, C.K. 2011: The East Greenland rifted volcanic margin. Geological Survey of Denmark and Greenland Bulletin 24, 96 pp. https://doi.org/10.34194/geusb.v24.4732

Brooks, C.K. 2018: Over Eighty Years at the Core of Petrological Research: the Skaergaard Intrusion. The History of Research, its Environment and Annotated Bibliography. Copenhagen: Geological Survey of Denmark and Greenland.

Brooks, C.K. & Nielsen, T.F.D. 1978: Early stages in the differentiation of the Skaergaard magma as revealed by a closely related suite of dike rocks. Lithos 11, 1–14. https://doi.org/10.1016/0024-4937(78)90027-0

Brooks, C.K. & Nielsen, T.F.D. 1990: The differentiation of the Skaergaard intrusion. A discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451–461). Contributions to Mineralogy and Petrology 104, 244–247. https://doi.org/10.1007/BF00306448

Brown, E.L. & Lesher, C.E. 2014: North Atlantic magmatism controlled by temperature, mantle composition and buoyancy. Nature Geoscience 7, 820–824. https://doi.org/10.1038/ngeo2264

Brown, G.M. 1956: The layered ultrabasic rocks of Rhum, Inner Hebrides. Philosophical Transactions of the Royal Society of London B 240, 1–53. https://doi.org/10.1098/rstb.1956.0011

Brown, G.M. & Guy, P. 1960: An X-ray study of exsolution phenomena in the Skaergaard pyroxenes. Mineralogical Magazine 32, 379–388. https://doi.org/10.1180/minmag.1960.032.248.04

Brown, G.M. & Peckett, A. 1977: Fluorapatites from the Skaergaard intrusion, East Greenland. Mineralogical Magazine 41, 227–232. https://doi.org/10.1180/minmag.1977.041.318.10

Brown . G.M. & Vincent, E.A. 1963: Pyroxenes from the late stages of fractionation of the Skaergaard intrusion, East Greenland. Journal of Petrology 4, 175–197. https://doi.org/10.1093/petrology/4.2.175

Brown, G.M., Vincent, E.A. & Brown, P.E. 1957: Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, East Greenland. Mineralogical Magazine 31, 511–543. https://doi.org/10.1180/minmag.1957.031.238.02

Buddington, A.F. & Lindsley, D.H. 1964: Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology 5, 310–357. https://doi.org/10.1093/petrology/5.2.310

Bufe, N.A., Holness, M.B. & Humphreys, M.C.S. 2014: Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion. Journal of Petrology 55, 1595–1617. https://doi.org/10.1093/petrology/egu035

Burnham, C.W. 1975: Water and magmas; a mixing model. Geochimica et Cosmochimica Acta 39, 1077–1084. https://doi.org/10.1016/0016-7037(75)90050-2

Byers, C.D., Christie, D.M., Muenow, D.W. & Sinton, J.M. 1984: Volatile contents and ferric-ferrous ratios of basalt, ferrobasalt, andesite and rhyodacite glasses from the Galapagos 95.5°W propagating rift. Geochimica et Cosmochimica Acta 48, 2239–2245. https://doi.org/10.1016/0016-7037(84)90220-5

Cabri, L.J., Beattie, M., Rudashevsky, N.S. & Rudashevsky, V.N. 2005: Process mineralogy of Au, Pd and Pt ores from the Skaergaard intrusion, Greenland, using new technology. Minerals Engineering 18, 887–897. https://doi.org/10.1016/j.mineng.2005.01.021

Carmichael, I.S.E. 1964: The mineralogy of Thingmuli, a Tertiary volcano in eastern Iceland. Journal of Petrology 5, 310–460. https://doi.org/10.1093/petrology/5.3.435

Carr, J.M. 1954: Zoned plagioclases in layered gabbros of the Skaergaard intrusion, East Greenland. Mineralogical Magazine 30, 367–375. https://doi.org/10.1180/minmag.1954.030.225.04

Cashman, K.V., Sparks, R.S.J. & Blundy, J.D. 2017: Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055. https://doi.org/10.1126/science.aag3055

Cawthorn, R.G. 2015: The Busveld complex, South Africa. In: Charlier, B. et al. (eds): Layered Intrusions, 589–648. Dordrecht: Springer.

Cawthorn, R.G. & Collerson, K.D. 1974: The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses. American Mineralogist 59, 1203–1208.

Cawthorn, R.G. & Walraven, F. 1998: Emplacement and crystallization time for the Bushveld Complex. Journal of Petrology 39, 1669–1687. https://doi.org/10.1093/petroj/39.9.1669

Charlier, B. & Grove, T.L. 2012: Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contributions to Mineralogy and Petrology 164, 27–44. https://doi.org/10.1007/s00410-012-0723-y

Charlier, B. Namur, O. & Grove, T.L. 2013: Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta 113, 79–93. https://doi.org/10.1016/j.gca.2013.03.017

Cho, J., Scoates, J.S., Weis, D. & Amini, M. 2022: Lead isotope geochemistry of plagioclase in the Skaergaard intrusion by LA-ICP-MS: Assessing the effects of crustal contamination and link with East Greenland flood basalts. Chemical Geology 592, 120723. https://doi.org/10.1016/j.chemgeo.2022.120723

Church, W.R. & Riccio, L. 1977: Fractionation trends in the Bay of Islands ophiolite of Newfoundland: polycyclic cumulate sequences in ophiolites and their classification. Canadian Journal of Earth Sciences 14, 1156–1165. https://doi.org/10.1139/e77-105

Coleman, L.C. 1978: Solidus and subsolidus compositional relationships of some coexisting Skaergaard pyroxenes. Contributions to Mineralogy and Petrology 66, 221–227. https://doi.org/10.1007/BF00373406

Coleman, R.G. 1977: Ophiolites. Ancient Ocean Lithosphere? New York: Springer-Verlag. 229 pp. https://doi.org/10.1007/978-3-642-66673-5

Conrad, M.E. & Naslund, H.R. 1989: Modally-graded rhythmic layering in the Skaergaard intrusion. Journal of Petrology 30, 251–269. https://doi.org/10.1093/petrology/30.2.251

Coombs, D.S. 1963: Trends and affinities of basaltic magmas and pyroxenes as illustrated on the diopside-olivine-silica diagram. Mineralogical Society of America, Special Paper 1, 227–250.

Daly, R.A. 1928: Bushveld igneous complex of the Transvaal. Bulletin Geological Society of America 39, 703–768. https://doi.org/10.1130/gsab-39-703

Deer, W.A. & Wager, L.R. 1939: Olivines from the Skaergaard intrusion, Kangerdlugssuak, East Greenland. American Mineralogist 24, 18–25.

Deer, W.A., Howie, R.A. & Zussman, J. 1978: Rock-Forming Minerals: Volume 2A (Second Edition): Single-Chain Silicates. London: Longman Group Ltd.

Dick, H.J.B. et al. 2000: A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179, 31–51. https://doi.org/10.1016/S0012-821X(00)00102-3

Dixon, S. & Rutherford, M.J. 1979: Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth and Planetary Science Letters 45, 45–60. https://doi.org/10.1016/0012-821X(79)90106-7

Doherty, A.L., Webster, J.D., Goldoff, B.A. & Piccoli, P.M. 2013: Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850–950°C. Chemical Geology 384, 94–111. https://doi.org/10.1016/j.chemgeo.2014.06.023

Eales, H.V. & Cawthorn, R.G. 1996: The Bushveld Complex. In: Cawthorn, R.G. (ed.): Developments in Petrology 15, 181–229. Amsterdam: Elsevier. https://doi.org/10.1016/S0167-2894(96)80008-X

Edmonds, M., Cashman, K.V., Holness, M. & Jackson, M. 2019: Architecture and dynamics of magma reservoirs. Philosophical Transactions of the Royal Society A 377, 20180298, 1–29. https://doi.org/10.1098/rsta.2018.0298

Fleet, M.F. 1974: Partition of Mg and Fe2+ in coexisting pyroxenes. Contributions to Mineralogy and Petrology 44, 251–257. https://doi.org/10.1007/BF00413170

Ford, C.E. 1981: Parental liquids of the Skaergaard intrusion cumulates. Nature 291, 21–25. https://doi.org/10.1038/291021a0

Frost, B.R., Lindsley, D.H. & Andersen, D.J. 1988: Fe-Ti oxide-silicate equilibria: assemblages with fayalitic olivine. American Mineralogist 73, 727–740.

Gay, P. & Muir, I.D. 1962: Investigation of the feldspars of the Skaergaard Intrusion, eastern Greenland. Journal of Geology 70, 565–581. https://doi.org/10.1086/626852

GERM (Geochemical Earth Reference Model) 2016: https://earthref.org/GERM/ (accessed November 2016)

Ghiorso, M.S. & Carmichael, I.S.E. 1995: Chemical mass transfer in magmatic processes. II. Applications in equilibrium crystallization, fractionation and assimilation. Contributions to Mineralogy and Petrology 90, 121–141. https://doi.org/10.1007/BF00378255

Ghiorso, M.S. & Evans, B.W. 2008: Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of Science 308, 957–1039. https://doi.org/10.2475/09.2008.01

Giordano, D., Russell, J.K. & Dingwell, D.B. 2008: Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters 271, 123–134. https://doi.org/10.1016/j.epsl.2008.03.038

Girifalco, L.A. & Good, R.J. 1957: A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. Journal of Physical Chemistry 61, 904–909. https://doi.org/10.1021/j150553a013

Godel, B., Rudashevsky, N.S., Nielsen, T.F.D., Barnes, S.J. & Rudashevsky, V.N. 2014: New constraints on the origin of the Skaergaard intrusion Cu–Pd–Au mineralization: Insights from high-resolution X-ray computed tomography. Lithos 190–191, 27–36. https://doi.org/10.1016/j.lithos.2013.11.019

Green, T.H. & Watson, E.B. 1982: Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’ rock series. Contributions to Mineralogy and Petrology 79, 96–105. https://doi.org/10.1007/BF00376966

Grove, T.L. & Baker, M.B. 1984: Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. Journal of Geophysical Research 89, 3253–3274. https://doi.org/10.1029/JB089iB05p03253

Grove, T.L. & Bryan, W.B. 1983: Fractionation of pyroxene-phyric MORB at low pressure: An experimental study. Contributions to Mineralogy and Petrology 84, 293–309. https://doi.org/10.1007/BF01160283

Grove, T.L. & Juster, T.C. 1989: Experimental investigation of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids. Contributions to Mineralogy and Petrology 103, 287–305. https://doi.org/10.1007/BF00402916

Grove, T.L. & Kinzler, R.J. 1992: Fractionation of Mid-Ocean Ridge Basalt (MORB). In: Morgan, J.P., Blackman, D.K. & Sinton, J.M. (eds): Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph 71, 281–309, American Geophysical Union. https://doi.org/10.1029/GM071p0281

Grove, T.L., Gerlach, D.C. & Sando, T.W. 1982: Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contributions to Mineralogy and Petrology 80, 160–182. https://doi.org/10.1007/BF00374893

Grove, T.L., Gerlach, D.C., Sando, T.W. & Baker, M.B. 1983: Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing: corrections and clarifications. Contributions to Mineralogy and Petrology 82, 407–408. https://doi.org/10.1007/BF00399718

Grove, T.L., Baker, M.B. & Kinzler, R.J. 1984: Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochimica et Cosmochimica Acta 48, 2113–2121. https://doi.org/10.1016/0016-7037(84)90391-0

Hagen-Peter, G., Tegner, C. & Lesher, C.E. 2019: Strontium isotope systematics for plagioclase of the Skaergaard intrusion (East Greenland): a window to crustal assimilation, differentiation, and magma dynamics. Geology 47, 313–316. https://doi.org/10.1130/G45639.1

Hamilton, E.I. 1963: The isotopic composition of strontium in the Skaergaard intrusion, East Greenland: A window to crustal assimilation differentiation, and magma dynamics. Journal of Petrology 47(4), 383–391. https://doi.org/10.1093/petrology/4.3.383

Hanghøj K. 2005: Report on exploration activities in 2004 on Skaergaard license no. 2005/09. Internal report, Skaergaard Minerals Corp., 51 pp., 1 appendix: geochemical analyses, core recovery, drill hole survey, 175 pp. (in archive of the Geological Survey of Denmark and Greenland, Report GRF 21895, http://maps.greenmin.gl/geusmap/?mapname=greenland_portal)

Hanghøj, K., Rosing, M.T. & Brooks, C.K. 1995: Evolution of the Skærgaard magma: evidence from crystallized melt inclusions. Contributions to Petrology and Mineralogy 120, 265–269. https://doi.org/10.1007/BF00306507

Hart, S.R. & Davis, K.E. 1978: Nickel partitioning between olivine and silicate melt. Earth and Planetary Science Letters 40, 203–219. https://doi.org/10.1016/0012-821X(78)90091-2

Haselton, J.D. & Nash, W.P. 1975: Ilmenite-orthopyroxene intergrowth from the Moon and the Skaergaard intrusion. Earth and Planetary Science Letters 26, 287–291. https://doi.org/10.1016/0012-821X(75)90003-5

Haskin, L.A. & Haskin, M.A. 1968: Rare-earth elements in the Skaergaard intrusion. Geochimica et Cosmochimica Acta 32, 433–447. https://doi.org/10.1016/0016-7037(68)90077-X

Henderson, P. 1970: The significance of the mesostasis of basic layered igneous rocks. Journal of Petrology 11, 463–473. https://doi.org/10.1093/petrology/11.3.463

Henderson, P. 1975: Geochemical indicator of the efficiency of fractionation of the Skaergaard intrusion, East Greenland. Mineralogical Magazine 40, 285–291. https://doi.org/10.1180/minmag.1975.040.311.08

Hess, H.H. 1941: Pyroxenes of common mafic magmas. Part 2. American Mineralogist 26, 573–594.

Hess, H.H. 1960: Stillwater Igneous Complex, Montana: A Quantitative Mineralogical Study. Geological Society of America Memoirs 80, 230 pp. https://doi.org/10.1130/MEM80-p1

Hirschmann, M. 1992: Origin of the transgressive granophyres from the Layered Series of the Skaergaard intrusion, East Greenland. Journal of Volcanology and Geothermal Research 52, 185–207. https://doi.org/10.1016/0377-0273(92)90140-9

Hirschmann, M.M., Renne, R.R. & McBirney, A.R. 1997: 40Ar39Ar dating of the Skaergaard intrusion. Earth and Planetary Science Letters 146, 645–658. https://doi.org/10.1016/S0012-821X(96)00250-6

Holness, M.B. 2018: Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record. Contributions to Mineralogy and Petrology 173, 48. https://doi.org/10.1007/s00410-018-1465-2

Holness, M.B., Nielsen, T.F.D. & Tegner, C. 2007a: Textural maturity of cumulates: a record of chamber filling, liquidus assemblage, cooling rate and large-scale convection in mafic layered intrusions. Journal of Petrology 48, 141–157. https://doi.org/10.1093/petrology/egl057

Holness, M.B., Tegner, C., Nielsen, T.F.D., Stripp, G. & Morse, S.A. 2007b: A textural record of solidification and cooling in the Skaergaard Intrusion, East Greenland. Journal of Petrology 48, 2359–2377. https://doi.org/10.1093/petrology/egm064

Holness, M.B., Morse, S.A. & Tegner, C. 2009: Response to comment by McBirney, Boudreau and Marsh. Journal of Petrology 50, 97–102. https://doi.org/10.1093/petrology/egn074

Holness, M.B., Stripp, G., Humphreys, M.C.S., Veksler, I.V., Nielsen, T.F.D. & Tegner, C. 2011: Silicate liquid immiscibility within the crystal mush: late-stage magmatic microstructures in the Skaergaard Intrusion, East Greenland. Journal of Petrology 52, 175–222. https://doi.org/10.1093/petrology/egq077

Holness, M.B., Namur, O. & Cawthorn, R.G. 2013: Disequilibrium dihedral angles in layered intrusions: a microstructural record of fractionation. Journal of Petrology 54, 2067–2093. https://doi.org/10.1093/petrology/egt041

Holness, M.B., Tegner, C., Namur, O. & Pilbeam, L. 2015: The earliest history of the Skaergaard magma chamber: a textural and geochemical study of the Cambridge drill core. Journal of Petrology 56, 1199–1227. https://doi.org/10.1093/petrology/egv034

Holness, M.B., Nielsen, T.F.D. & Tegner, C. 2017a: The Skaergaard Intrusion of East Greenland: paradigms, problems and new perspectives. Elements 13, 391–396. https://doi.org/10.2138/gselements.13.6.391

Holness, M.B., Tegner, C., Nielsen, T.F.D. & Charlier, B. 2017b: The thickness of the mushy layer on the floor of the Skaergaard magma chamber at apatite saturation. Journal of Petrology 58, 909–932. https://doi.org/10.1093/petrology/egx040

Holness, M.B., Vukmanovic, Z. & Mariani, E. 2017c: Assessing the role of compaction in the formation of adcumulates: a microstructural perspective. Journal of Petrology 58, 643–674. https://doi.org/10.1093/petrology/egx037

Holness, M.B., Cawthorn, R.G. & Roberts, J. 2017d: The thickness of the crystal mush on the floor of the Bushveld magma chamber. Contributions to Mineralogy and Petrology 172,102. https://doi.org/10.1007/s00410-017-1423-4

Holness, M.B., Stock, M.J. & Geist, D. 2019: Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philosophical Transactions of the Royal Society A 377, 20180006. https://doi.org/10.1098/rsta.2018.0006

Holness, M., Honour, V. & Nicoli, G. 2020: Differential migration of interstitial immiscible liquids in the Skaergaard Layered Series. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2334. https://doi.org/10.5194/egusphere-egu2020-2334

Holwell, D.A., Barnes, S.J., Le Vaillant, M., Keays, R.R., Fisher, L.A. & Prasser, R. 2016: 3D textural evidence for the formation of ultra-high tenor precious metal bearing sulfide microdroplets in offset reefs: An extreme example from the Platinova Reef, Skaergaard Intrusion, Greenland. Lithos 256–257, 55–74. https://doi.org/10.1016/j.lithos.2016.03.020

Honour, V.C. 2019: Microstructural evolution of silicate immiscible liquids in solidifying ferrobasalts. PhD thesis, University of Cambridge. https://doi.org/10.1007/s00410-019-1610-6

Honour, V.C., Holness, M.B., Partridge, J.L. & Charlier, B. 2019a: Microstructural evolution of silicate immiscible liquids in ferrobasalts. Contributions to Mineralogy and Petrology 174, 77. https://doi.org/10.1007/s00410-019-1610-6

Honour, V.C., Holness, M.B., Charlier, B., Piazolo, S.C., Namur, O., Prosa, T.J., Martin, I., Helz, R.T., Maclennan, J. & Jean, M.M. 2019b: Compositional boundary layers trigger liquid unmixing in a basaltic crystal mush. Nature Communications 10, 4821. https://doi.org/10.1038/s41467-019-12694-5

Hoover, J.D. 1989a: The chilled marginal gabbro and other contact rocks of the Skaergaard intrusion. Journal of Petrology 30, 441–476.

Hoover, J.D. 1989b: Petrology of the marginal border series of the Skaergaard intrusion. Journal of Petrology 30, 399–439. https://doi.org/10.1093/petrology/30.2.399

Humphreys, M.C.S. 2009: Chemical evolution of intercumulus liquid, as recorded in plagioclase overgrowth rims from the Skaergaard intrusion. Journal of Petrology 50, 127–145. https://doi.org/10.1093/petrology/egn076

Humphreys, M.C.S. 2011: Silicate liquid immiscibility within the crystal mush: evidence from Ti in plagioclase from the Skaergaard intrusion. Journal of Petrology 52, 147–174. https://doi.org/10.1093/petrology/egq076

Humphreys, M.C.S. & Holness, M.B. 2010: Melt-rich segregations in the Skaergaard Marginal Border Series: tearing of a vertical silicate mush. Lithos 119, 181–192. https://doi.org/10.1016/j.lithos.2010.06.006

Hunter, R.H. 1987: Textural equilibrium in layered igneous rocks. In: Parsons, I. (ed.): Origins of Igneous Layering. NATO ASI Series C: Mathematical and Physical Sciences 196, 247–262. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2509-5_15

Hunter, R.H. & Sparks, R.S.J. 1987: The differentiation of the Skaergaard intrusion. Contributions to Mineralogy and Petrology 95, 451–461. https://doi.org/10.1007/BF00402205

Irvine, T.N. 1970a: Crystallization sequences in the Muskox intrusion and other layered intrusions – I. Olivine-pyroxene-plagioclase relations. Geological Society of South Africa, Special Publications 1, 441–476.

Irvine, T.N. 1970b: Heat transfer during solidification of layered intrusions. I. Sheets and sills. Canadian Journal of Earth Sciences 7, 1031–1061. https://doi.org/10.1139/e70-098

Irvine, T.N. 1974: Petrology of the Duke Island Ultramafic Complex Southeastern Alaska. Geological Society of America Memoirs 138, 240 pp. https://doi.org/10.1130/MEM138-p1

Irvine, T.N. 1979: Rocks whose composition is determined by crystal accumulation and sorting. In: Yoder, H.S. (ed.): Evolution of the Igneous Rocks. Fiftieth Anniversary Perspectives, 245–306. Princeton, New Jersey: Princeton University Press. https://doi.org/10.2307/j.ctt13x1dkm.12

Irvine, T.N. 1980: Magmatic infiltration metasomatism, double-diffusive fractional crystallization, and adcumulus growth in the Muskox intrusion and other layered intrusions. In: Hargraves, R.B. (ed.): Physics of Magmatic Processes, 325–383. Princeton, New Jersey: Princeton University Press. https://doi.org/10.1515/9781400854493.325

Irvine, T.N. 1982: Terminology for layered intrusions. Journal of Petrology 23, 127–162. https://doi.org/10.1093/petrology/23.2.127-a

Irvine, T.N. 1987: Layering and related structures in the Duke Island and Skaergaard intrusions: similarities, differences, and origins. In: Parsons, I. (ed.): Origins of Igneous Layering. NATO ASI Series C: Mathematical and Physical Sciences 196, 185–245. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2509-5_6

Irvine, T.N. 1991: Emplacement of the Skaergaard intrusion. Carnegie Institution of Washington Yearbook, 91–96.

Irvine, T.N., Andersen, J.C.Ø. & Brooks, C.K. 1998: Included blocks (and blocks within blocks) in the Skaergaard intrusion: geological relations and the origin of rhythmic modally graded layers. Geological Society of America Bulletin 110, 1398–1447. https://doi.org/10.1130/0016-7606(1998)110<1398:IBABWB>2.3.CO;2

Jackson, E.D. 1961: Primary textures and mineral associations in the ultramafic zone of the Stillwater complex, Montana [Report No. 358], Professional Paper Report. https://doi.org/10.3133/pp358

Jackson, E.D. 1970: The cyclic unit in layered intrusions – a comparison of repetitive stratigraphy in the ultramafic parts of the Stillwater, Muskox, Great Dyke and Bushveld complexes. Symposium of the Bushveld Igneous Complex and Other Layered Intrusions, Geological Society of South Africa, Special Publication 1, 391–424.

Jakobsen, J.K. 2007: Melt Inclusion Studies of the Skaergaard Intrusion, East Greenland. Aarhus Geoscience – PhD thesis 29, Department of Earth Sciences, University of Aarhus.

Jakobsen, J.K., Veksler, I.V., Tegner, C. & Brooks, C.K. 2005: Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33, 885–888. https://doi.org/10.1130/G21724.1

Jakobsen, J.K., Tegner, C., Brooks, C.K., Kent, A.J.R., Lesher, C.E., Nielsen, T.F.D. & Wiedenbeck, M. 2010: Parental magma of the Skaergaard intrusion: constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes. Contributions to Mineralogy and Petrology 159, 61–79. https://doi.org/10.1007/s00410-009-0416-3

Jakobsen, J.K., Veksler, I.V., Tegner, C. & Brooks, C.K. 2011: Crystallization of the Skaergaard intrusion from an emulsion of immiscible iron- and silica-rich liquids: evidence from melt inclusions in plagioclase. Journal of Petrology 52, 345–373. https://doi.org/10.1093/petrology/egq083

James, P.F. 1975: Review: Liquid-phase separation in glass forming systems. Journal of Materials Science 10, 1802–1825. https://doi.org/10.1007/BF00554944

Jang, Y.D. & Naslund, H.R. 2001: Major and trace element composition of Skaergaard plagioclase; geochemical evidence for changes in magma dynamics during the final stage of crystallization of the Skaergaard intrusion. Contributions to Mineralogy and Petrology 140, 441–457. https://doi.org/10.1007/s004100000176

Jang, Y.D. & Naslund, H.R. 2003: Major and trace element variation in ilmenite in the Skaergaard intrusion: petrologic implications. Chemical Geology 193, 109–125. https://doi.org/10.1016/S0009-2541(02)00224-3

Jang, Y.D., Naslund, H.R. & McBirney, A.R. 2001: The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization: iron enrichment revisited. Earth and Planetary Science Letters 189, 189–196. https://doi.org/10.1016/S0012-821X(01)00366-1

Jaupart, C. & Tait, S.R. 1995: Dynamics of differentiation in magma reservoirs. Journal of Geophysical Research (Series B) 100, 17615–17636. https://doi.org/10.1029/95JB01239

Johannes, W. & Koepke, J. 2001: Incomplete reaction of plagioclase in experimental dehydration melting of amphibolite. Australian Journal of Earth Sciences 48, 581–590. https://doi.org/10.1046/j.1440-0952.2001.00876.x

Kays, M.A., Goles, G.G. & Grover, T.W. 1989: Precambrian sequence bordering the Skaergaard Intrusion. Journal of Petrology 30, 321–361. https://doi.org/10.1093/petrology/30.2.321

Keays, R.R. & Tegner, C. 2015: Magma chamber processes in the formation of the low-sulphide magmatic Au–PGE mineralization of the Platinova reef in the Skaergaard intrusion, East Greenland. Journal of Petrology 56, 2319–2340. https://doi.org/10.1093/petrology/egv075

Kelemen, P.B., Koga, K. & Shimizu, N. 1997: Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters 146, 475–488. https://doi.org/10.1016/S0012-821X(96)00235-X

Kersting, A.B., Arculus, R.J., Delano, J.W. & Loureiro, D. 1989: Electrochemical measurements bearing on the oxidation state of the Skaergaard layered intrusion. Contributions to Mineralogy and Petrology 102, 376–388. https://doi.org/10.1007/BF00373730

Kilinc, A., Carmichael, I.S.E., Rivers, M.L. & Sack, R.O. 1983: The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contributions to Mineralogy and Petrology 83, 136–140. https://doi.org/10.1007/BF00373086

Kinzler, R.J., Grove, T.L. & Recca, S.J. 1990: An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt. Geochimica et Cosmochimica Acta 54, 1255–1265. https://doi.org/10.1016/0016-7037(90)90151-A

Klemme, S., Günther, D., Hametner, K., Prowatke, S. & Zack, T. 2006: The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology 234, 251–263. https://doi.org/10.1016/j.chemgeo.2006.05.005

Knoche, R., Dingwell, D.B. & Webb, S.L. 1995: Melt densities for leucogranites and granitic pegmatites: partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O5, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O-1, TiO2, Nb2O5, Ta2O5, and WO3. Geochimica et Cosmochimica Acta 59, 4645–4652. https://doi.org/10.1016/0016-7037(95)00328-2

Kruger, W. & Latypov, R. 2020: Fossilized solidification fronts in the Bushveld Complex argues for liquid-dominated magmatic systems. Nature Communications 11, 2909. https://doi.org/10.1038/s41467-020-16723-6

Kucuk, A., Clare, A.G. & Jones, L. 1999: An estimation of the surface tension for silicate glass melts at 1400°C using statistical analysis. Glass Technology 40, 149–153.

Kudo, A.M. & Weill, D.F. 1970: An igneous plagioclase thermometer. Contributions to Mineralogy and Petrology 25, 52–65. https://doi.org/10.1007/BF00383062

Lange, R.A. & Carmichael, I.S.E. 1987: Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochimica et Cosmochimica Acta 51, 2931–2946. https://doi.org/10.1016/0016-7037(87)90368-1

Lange, R.L. & Carmichael, I.S.E. 1990: Chapter 2. Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. In: James, N. & Kelly, R. (eds): Modern Methods of Igneous Petrology 25–64. Berlin, Boston: De Gruyter. https://doi.org/10.1515/9781501508769-006

Langmuir, C.H. 1989: Geochemical consequences of in situ crystallization. Nature 340, 199–205. https://doi.org/10.1038/340199a0

Langmuir, C.H., Klein, E.M. & Plank, T. 1992: Petrological systematics of Mid-Ocean Ridge basalts: Constraints on melt generation beneath Ocean Ridges. In: Phipps Morgan et al. (eds): Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph 71, 183–279. American Geophysical Union. https://doi.org/10.1029/GM071p0183

Larsen, R.B. 1992: Volatile-melt interaction in the Skaergaard intrusion, East Greenland. PhD thesis, University of Copenhagen.

Larsen, R.B. & Brooks, C.K. 1994: Origin and evolution of gabbroic pegmatites in the Skaergaard intrusion, East Greenland. Journal of Petrology 35, 1651–1679. https://doi.org/10.1093/petrology/35.6.1651

Larsen, R.B. & Tegner, C. 2006: Pressure conditions for the solidification of the Skaergaard intrusion: eruption of East Greenland flood basalts in less than 300 000 years. Lithos 92, 181–197. https://doi.org/10.1016/j.lithos.2006.03.032

Larsen, L.M., Watt, W.S. & Watt, M. 1989: Geology and petrology of the lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. Grønlands Geologiske Undersøgelse Bulletin 157, 164 pp. https://doi.org/10.34194/bullggu.v157.6699

Larsen, R.B., Brooks, C.K. & Bird, D.K. 1992: Methane-bearing, aqueous, saline solutions in the Skaergaard intrusion, East Greenland. Contributions to Mineralogy and Petrology 112, 428–437. https://doi.org/10.1007/BF00310472

Le Maitre, R.W. (ed.) 1989: A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. 103 pp. Oxford: Blackwell Scientific Publications.

Leeman, W.P. & Dasch, E.J. 1978: Strontium, lead and oxygen isotopic investigation of the Skaergaard intrusion, East Greenland. Earth and Planetary Science Letters 41, 47–59. https://doi.org/10.1016/0012-821X(78)90040-7

Lesher, C.E., Brown, E.L., Barfod, G.H., Glessner, J., Stausberg, N., Thy, P., Tegner, C., Salmonsen, L.P. & Nielsen, T.F.D. 2023: Iron Isotope Systematics of the Skaergaard Intrusion and Implications for its Liquid Line of Descent. Journal of Petrology 64(8). egad053. https://doi.org/10.1093/petrology/egad053

Lester, G.W., Clark, A.H., Kyser, T.K. & Naslund, H.R. 2013: Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas. Contributions to Mineralogy and Petrology 166, 329–349. https://doi.org/10.1007/s00410-013-0878-1

Li, C. & Ripley, E.M. 2010: The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling. Chemical Geology 275, 99–104. https://doi.org/10.1016/j.chemgeo.2010.05.001

Li, C., Ripley, E.M. & Mathez, E.A. 2003: The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chemical Geology 201, 295–306. https://doi.org/10.1016/j.chemgeo.2003.08.008

Lindsley, D.H. 1983: Pyroxene thermometry. American Mineralogist 68, 477–493.

Lindsley, D.H. & Andersen, D.J. 1983: A two-pyroxene thermometer. Proceedings of the Thirteenth Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 88(S02), A887–A906. https://doi.org/10.1029/JB088iS02p0A887

Lindsley, D.H., Brown, G.M. & Muir, I.D. 1969: Conditions of the ferrowollastonite-ferrohedenbergite inversion in the Skaergaard intrusion, East Greenland. Mineralogical Society of America, Special Papers 2, 193–201.

Lindsley, D.H., Frost, B.R., Andersen, D.J. & Davidson, P.M. 1990: Fe-Ti oxide-silicate equilibria: assemblages with orthopyroxene. In: Spencer, R.J. & Chou, I.-M. (eds): Fluid-Mineral Interactions: A tribute to H.P. Eugster. Geochemical Society Special Publication 2, 103–119.

Longhi, J. & Pan, V. 1988: A reconnaissance study of phase boundaries in low-alkali basaltic liquids. Journal of Petrology 29, 115–147. https://doi.org/10.1093/petrology/29.1.115

Loucks, R.R. 1996: A precise olivine-augite Mg-Fe-exchange geothermometer. Contributions to Mineralogy and Petrology 125, 140–150. https://doi.org/10.1007/s004100050211

Lundgaard, K.L. & Tegner, C. 2004: Partitioning of ferric and ferrous iron between plagioclase and silicate melt. Contributions to Mineralogy and Petrology 147, 470–483. https://doi.org/10.1007/s00410-004-0568-0

Maaløe, S. 1974: The zoned plagioclase of the Skaergaard intrusion, PhD thesis, University of Copenhagen.

Maaløe, S. 1976a: The zoned plagioclase of the Skaergaard intrusion, East Greenland. Journal of Petrology 17, 398–419. https://doi.org/10.1093/petrology/17.3.398

Maaløe, S. 1976b: Quantitative aspects of fractional crystallization of major elements. Journal of Geology 84, 81–96. https://doi.org/10.1086/628175

Maaløe, S. 1978: The origin of rhythmic layering. Mineralogical Magazine 42, 337–345. https://doi.org/10.1180/minmag.1978.042.323.03

Maaløe, S. 1984: Fractional crystallization and melting within binary systems with solid solution. American Journal of Science 284, 272–287. https://doi.org/10.2475/ajs.284.3.272

Maaløe, S. 1987: Rhythmic layering of the Skaergaard intrusion. In: Parsons, I. (ed.): Origins of Igneous Layering. NATO ASI Series C: Mathematical and Physical Sciences 196, 473–504. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2509-5_7

Manning, C.E. & Bird, D.K. 1986: Hydrothermal clinopyroxenes of the Skaergaard intrusion. Contributions to Mineralogy and Petrology 92, 437–447. https://doi.org/10.1007/BF00374426

Marsh, B.D. 1988: Crystal capture, sorting, and retention in convecting magma. Geological Society of America Bulletin 100, 1720–1737. https://doi.org/10.1130/0016-7606(1988)100<1720:CCSARI>2.3.CO;2

Marsh, B.D. & Maxey, M.R. 1985: On the distribution and separation of crystals in convecting magma. Journal of Volcanology and Geothermal Research 24, 95–150. https://doi.org/10.1016/0377-0273(85)90030-7

Martin, D. & Nokes, R. 1989: A fluid-dynamical study of crystal settling in convecting magmas. Journal of Petrology 30, 1471–1500. https://doi.org/10.1093/petrology/30.6.1471

Mason, B. 1975: Compositional limits of wollastonite and bustamite. American Mineralogist 60, 209–212.

McBirney, A.R. 1975: Differentiation of the Skaergaard Intrusion. Nature 253, 691–694. https://doi.org/10.1038/253691a0

McBirney, A.R. 1989a: The Skaergaard layered series: 1. Structure and average compositions. Journal of Petrology 30, 363–397. https://doi.org/10.1093/petrology/30.2.363

McBirney, A.R. 1989b: Geological Map of the Skaergaard Intrusion, East Greenland. University of Oregon, Eugene, Oregon.

McBirney, A.R. 1995: Mechanisms of differentiation in the Skaergaard Intrusion. Journal of the Geological Society, London 152, 421–435. https://doi.org/10.1144/gsjgs.152.3.0421

McBirney, A.R. 1996: The Skaergaard Intrusion. In: Cawthorn, R.G. (ed.): Layered Intrusions. Developments in Petrology 15, 147–180. Amsterdam: Elsevier. https://doi.org/10.1016/S0167-2894(96)80007-8

McBirney, A.R. 1998: The Skaergaard Layered Series. Part V. Included trace elements. Journal of Petrology 39, 255–276. https://doi.org/10.1093/petroj/39.2.255

McBirney, A.R. 2002: The Skaergaard Layered Series. Part VI. Excluded trace elements. Journal of Petrology 43, 535–556. https://doi.org/10.1093/petrology/43.3.535

McBirney, A.R. & Creaser, R.A. 2003: The Skaergaard Layered Series. Part VII. Sr and Nd isotopes. Journal of Petrology 44, 757–771. https://doi.org/10.1093/petrology/44.4.757

McBirney, A.R. & Nakamura, Y. 1974: Immiscibility in the late-stage magmas of the Skaergaard intrusion. Carnegies Institution Washington, Yearbook 73, 348–352.

McBirney, A.R. & Naslund, H.R. 1990: The differentiation of the Skaergaard intrusion. A discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451–461). Contributions to Mineralogy and Petrology 104, 235–247. https://doi.org/10.1007/BF00306448

McBirney, A.R. & Noyes, R.M. 1979: Crystallization and layering of the Skaergaard intrusion. Journal of Petrology 20, 487–564. https://doi.org/10.1093/petrology/20.3.487

McBirney, A.R. & Sonnenthal, E.L. 1990: Metasomatic replacement in the Skaergaard intrusion, East Greenland: preliminary observations. Chemical Geology 88, 245–260. https://doi.org/10.1016/0009-2541(90)90092-L

McCallum, I.S. 1968: Equilibrium Relationships Among the Coexisting Minerals in the Stillwater Complex, Montana. PhD thesis, University of Chicago (quoted by Saxena 1973).

McCallum, I.S. 1996: The Stillwater Complex. In: Cawthorn, R.G. (ed.): Developments in Petrology 15, 441–483. Ansterdam: Elsevier. https://doi.org/10.1016/S0167-2894(96)80015-7

McKenzie, D. 1984: The generation and compaction of partially molten rock. Journal of Petrology 25, 713–765. https://doi.org/10.1093/petrology/25.3.713

McKenzie, D. 1989: Some remarks on the movements of small fractions in the mantle. Earth and Planetary Science Letters 95, 53–72. https://doi.org/10.1016/0012-821X(89)90167-2

McKenzie, D. 2011: Compaction and crystallization in magma chambers: towards a model of the Skaergaard intrusion. Journal of Petrology 52, 905–980. https://doi.org/10.1093/petrology/egr009

Medaris, L.G. 1969: Partitioning of Fe++ and Mg++ between coexisting synthetic olivine and orthopyroxene, American Journal of Science 267, 945–968. https://doi.org/10.2475/ajs.267.8.945

Michael, P.J. & Chase, R.L. 1987: The influence of primary magma composition, H20 and pressure on mid-ocean ridge basalt differentiation. Contributions to Mineralogy and Petrology 96, 245–263. https://doi.org/10.1007/BF00375237

Mills, K.C. 1986: Estimation of physicochemical properties of coal slags and ashes. In: Vorres, K.S. (ed.): Mineral Matter and Ash in Coal, 195–214. ACS Symposium Series 301, American Chemical Society, Washington DC. https://doi.org/10.1021/bk-1986-0301.ch015

Morgan, J.P., Harding, A., Orcutt, J., Kent, G. & Chen, Y.J. 1994: Chapter 7 An observational and theoretical synthesis of magma chamber geometry and crustal genesis along a mid-ocean ridge spreading center. In: Ryan, M.P. (ed.): International Geophysics 57, 139–178. Academic Press. https://doi.org/10.1016/S0074-6142(09)60095-4

Morse, S.A. 1969: The Kiglapait Layered Intrusion, Labrador. Geological Society of American Memoirs 112. https://doi.org/10.1130/MEM112-p1

Morse, S.A. 1984: Cation diffusion in plagioclase feldspar. Science 225, 504–505. https://doi.org/10.1126/science.225.4661.504

Morse, S.A. 1986: Convection in aid of adcumulus growth. Journal of Petrology 27, 1183–1214. https://doi.org/10.1093/petrology/27.5.1183

Morse, S.A. 1996: Kiglapait mineralogy III: olivine compositions and Rayleigh fractionation models. Journal of Petrology 37, 1037–1061. https://doi.org/10.1093/petrology/37.5.1037

Morse, S.A. 2008a: Toward a thermal model for the Skaergaard liquidus. American Mineralogist 93, 248–251. https://doi.org/10.2138/am.2008.2792

Morse, S.A. 2008b: Compositional convection trumps silicate liquid immiscibility in layered intrusions: a discussion of ‘liquid immiscibility and the evolution of basaltic magma’ by Veksler et al., Journal of Petrology 48, 2187–2210. Journal of Petrology 49, 2157–2168. https://doi.org/10.1093/petrology/egn063

Morse, S.A. 2010: A critical comment on Thy et al. (2009b): Liquidus temperatures of the Skaergaard magma. American Mineralogist 95, 1817–1827. https://doi.org/10.2138/am.2010.3473

Morse, S.A. 2015: Kiglapait Intrusion, Labrador. In: Charlier, B. et al. (eds): Layered Intrusions, 589–648. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9652-1_13

Morse, S.A., Lindsley, D.H. & Williams, R.J. 1980: Concerning intensive parameters in the Skaergaard intrusion. American Journal of Science 280A, 159–170.

Muir, I.D. 1951: The clinopyroxenes of the Skaergaard intrusion, eastern Greenland. Mineralogical Magazine 29, 690–714. https://doi.org/10.1180/minmag.1951.029.214.03

Murase, T. & McBirney, A.R. 1973: Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin 84, 3563–3592. https://doi.org/10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2

Namur, O. & Humphreys, M.C.S. 2018: Trace element constraints on the differentiation and crystal mush solidification in the Skaergaard intrusion, Greenland. Journal of Petrology 59, 387–418. https://doi.org/10.1093/petrology/egy032

Namur, O., Humphreys, M.C.S. & Holness, M.B. 2013: Lateral reactive infiltration in a vertical gabbroic crystal mush, Skaergaard intrusion, East Greenland. Journal of Petrology 54, 985–1016. https://doi.org/10.1093/petrology/egt003

Namur, O., Humphreys, M.C.S. & Holness., M.B. 2014: Crystallization of interstitial liquid and latent heat buffering in solidifying gabbros: Skaergaard intrusion, Greenland. Journal of Petrology 55, 1389–1427. https://doi.org/10.1093/petrology/egu028

Namur, O. et al. 2015: Igneous layering in basaltic magma chambers. In: Charlier, B. et al. (eds): Layered Intrusions, 75–152. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9652-1_2

Nash, W.P. 1976: Fluorine, chlorine, and OH-bearing minerals in the Skaergaard intrusion. American Journal of Science 276, 546–557. https://doi.org/10.2475/ajs.276.4.546

Naslund, H.R. 1984: Petrology of the upper border series of the Skaergaard intrusion. Journal of Petrology 25, 185–212. https://doi.org/10.1093/petrology/25.1.185

Naslund, H.R. 1989: Petrology of the Basistoppen sill, East Greenland: a calculated magma differentiation trend. Journal of Petrology 30, 299–319. https://doi.org/10.1093/petrology/30.2.299

Naslund, H.R. & McBirney, A.R. 1996: Mechanisms of formation of igneous layering. In: Cawthorn, R.G. (ed.): Layered Intrusions. Developments in Petrology 15, 1–43. Amsterdam: Elsevier. https://doi.org/10.1016/S0167-2894(96)80003-0

Naslund, H.R., Turner, P.A. & Keith, D.W. 1987: Crystallization and layer formation in the middle zone of the Skaergaard Intrusion. Bulletin Geological Society of Denmark 38, 165–171. https://doi.org/10.37570/bgsd-1990-38-16

Natland, J.H., Meyer, P.S., Dick, H.J.B. & Bloomer, S.H. 1991: Magmatic oxide and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent. In: Von Herzen, R.P. et al. (eds): Proceedings of the Ocean Drilling Program, Scientific Results 118, 78–111. https://doi.org/10.2973/odp.proc.sr.118.163.1991

Nielsen, R.L. 1992: BIGD.FOR: a FORTRAN program to calculate trace-element partition coefficients for natural mafic and intermediate composition magmas. J Computers & Geosciences 18, 773–788. https://doi.org/10.1016/0098-3004(92)90024-L

Nielsen, R.L. & Beard, J.S. 2000: Magnetite-melt HFSE partitioning. Chemical Geology 164, 21–34. https://doi.org/10.1016/S0009-2541(99)00139-4

Nielsen, R.L. & DeLong, S.E. 1992: A numerical approach to boundary layer fractionation: application to differentiation in natural magma systems. Contributions to Mineralogy and Petrology 110, 355–369. https://doi.org/10.1007/BF00310750

Nielsen, R.L., Gallahan, W.E. & Newberger, F. 1992: Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contributions to Mineralogy and Petrology 110, 488–499. https://doi.org/10.1007/BF00344083

Nielsen, R.L., Forsythe, L.M., Gallahan, W.E. & Fisk, M.R. 1994: Major- and trace-element magnetite-melt equilibria. Chemical Geology 117, 167–191. https://doi.org/10.1016/0009-2541(94)90127-9

Nielsen, T.F.D. 1978: The tertiary dike swarms of the Kangerdlugssuaq area, East Greenland. An example of magmatic development during continental break-up. Contributions to Mineralogy and Petrology 67, 63–78. https://doi.org/10.1007/BF00371634

Nielsen, T.F.D. 2004: The shape and volume of the Skaergaard intrusion, Greenland: implications for mass balance and bulk composition. Journal of Petrology 45, 507–530. https://doi.org/10.1093/petrology/egg092

Nielsen, T.F.D. 2016: In situ fractionation and inward migration of the solidification front in the Skaergaard intrusion, East Greenland. Geological Survey of Denmark and Greenland Bulletin 35, 59–62. https://doi.org/10.34194/geusb.v35.4939

Nielsen, T.F.D. et al. 2000: Retrieval of Platinova drill cores: a new Skaergaard initiative. 2000 fall meeting, San Francisco, USA, 15–19 December 2000. Eos, Transactions, American Geophysical Union 81(48), F1366 only.

Nielsen, T.F.D., Andersen, J.C.Ø. & Brooks, C.K. 2005: The Platinova reef of the Skaergaard intrusion. In: Mungal, J.E. (ed.): Exploration for platinum group element deposits. Mineralogical Association of Canada Short Course Series 35, 431–455.

Nielsen, T.F.D., Olsen, S.D. & Steensgaard, B.M. 2009: Developing a 3-D model for the Skaergaard intrusion in East Greenland: constraints on structure, mineralisation and petrogenic models. Geological Survey of Denmark and Greenland Bulletin 17, 61–64. https://doi.org/10.34194/geusb.v17.5015

Nielsen, T.F.D., Andersen, J.C.Ø., Holness, M.B., Keiding, J.K., Rudashevsky, N.S., Rudashevsky, V.N., Salmonsen, L.P., Tegner, C. & Veksler, I.V. 2015: The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt. Journal of Petrology 56, 1643–1676. https://doi.org/10.1093/petrology/egv049

Nielsen, T.F.D., Brooks, C.K. & Keiding, J.K. 2019a: Bulk liquid for the Skaergaard intrusion and its PGE-Au mineralization: composition, correlation, liquid line of descent, and timing of sulphide saturation and silicate–silicate immiscibility. Journal of Petrology 60, 1853–1880. https://doi.org/10.1093/petrology/egz055

Nielsen, T.F.D., Rudashevsky, N.S., Rudashevsky, S.M., Weatherley, S.M. & Andersen, J.C.Ø. 2019b: Elemental distributions and mineral parageneses of the Skaergaard PGE-Au mineralization: consequences of accumulation, redistribution, and equilibration in an upward-migrating mush zone. Journal of Petrology 60, 1903–1934. https://doi.org/10.1093/petrology/egz057

Nisbet, E.G. & Fowler, C.M.R. 1978: The Mid-Atlantic Ridge at 37 and 45° N: some geophysical and petrological constraints. Geophysical Journal International 54(3), 631–660. https://doi.org/10.1111/j.1365-246X.1978.tb05499.x

Niu, Y. & Batiza, R. 1991a: In situ densities of MORB melts and residual mantle: implications for buoyancy forces beneath mid-ocean ridges. Journal of Geology 99, 767–775. https://doi.org/10.1086/629538

Niu, Y. & Batiza, R. 1991b: DENSCAL: Program for calculating densities of silicate melts and mantle minerals as a function of pressure, temperature, and composition in melting range. Computers & Geosciences 17, 679–387. https://doi.org/10.1016/0098-3004(91)90039-G

Norton, D. & Taylor, H.P. 1979: Quantitative Simulation of the Hydrothermal Systems of Crystallizing Magmas on the Basis of Transport Theory and Oxygen Isotope Data: An analysis of the Skaergaard Intrusion. Journal of Petrology 20, 421–486. https://doi.org/10.1093/petrology/20.3.421

Norton, D., Taylor, H.P. & Bird, D.K. 1984: The geometry and high-temperature brittle deformation of the Skaergaard Intrusion. Journal of Geophysical Research 89, 10178–10192. https://doi.org/10.1029/JB089iB12p10178

Nwe, Y.Y. 1975: Two different pyroxene crystallisation trends in the trough bands of the Skaergaard Intrusion, East Greenland. Contributions to Mineralogy and Petrology 49, 285–300. https://doi.org/10.1007/BF00376181

Nwe, Y.Y. 1976: Electron-probe studies of the early pyroxenes and olivines from the Skaergaard intrusion, East Greenland. Contributions to Mineralogy and Petrology 55, 105–126. https://doi.org/10.1007/BF00372758

Nwe, Y.Y. & Copley, P.A. 1975: Chemistry, subsolidus relations and electron petrography of pyroxenes from the late ferrodiorites of the Skaergaard intrusion, East Greenland. Contributions to Mineralogy and Petrology 53, 37–54. https://doi.org/10.1007/BF00402453

O’Hara, M.J. & Herzberg, C. 2002: Interpretation of trace elements and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochimica et Cosmochimica Acta 66, 2167–2191. https://doi.org/10.1016/S0016-7037(02)00852-9

Osborn, E.F. 1959: Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science 257, 609–647. https://doi.org/10.2475/ajs.257.9.609

Osborn, E.F. 1979: The reaction principle. In: Yoder, H.S. Jr. (ed.): Evolution of the Igneous Rocks: Fiftieth Anniversary Perspectives. 133–169. Princeton, New Jersey: Princeton University Press. https://doi.org/10.2307/j.ctt13x1dkm.8

Page, N.J. 1979: Stillwater Complex, Montana – structure, mineralogy, and petrology of the basal zone with emphasis on the occurrence of sulfides. U.S. Geological Survey. Professional Paper 1038. Washington: United States Government Printing Office. https://doi.org/10.3133/pp1038

Pallister, J.S. & Hopson, C.A. 1981: Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research 86(B4), 2593–2644. https://doi.org/10.1029/JB086iB04p02593

Papike, J.J. 1980: Chapter 10. Pyroxene mineralogy of the Moon and meteorites. In: Charles, T.P. (ed.): Pyroxenes 495–526. Berlin, Boston: De Gruyter. https://doi.org/doi:10.1515/9781501508257-014

Papike, J.J., Cameron, K.L. & Baldwin, K. 1974: Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geological Society of America, Abstracts with Programs 1974, 1053–1054.

Parker, M.v.K., Mason, P.R.D. & Westrenen, W.v. 2011: Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts. Geochimica et Cosmochimica Acta 75, 4179–4193. https://doi.org/10.1016/j.gca.2011.04.031

Paster, T.P., Schauwecker, D.S. & Haskin, L.A. 1974: The behavior of some trace elements during solidification of the Skaergaard layered series. Geochimica et Cosmochimica Acta 38, 1549–1577. https://doi.org/10.1016/0016-7037(74)90174-4

Pedersen, A.K., Watt, M., Watt, W.S. & Larsen, L.M. 1997: Structure and stratigraphy of the early Tertiary basalts of the Blosseville Kyst, East Greenland. Journal of the Geological Society, London 154, 565–570. https://doi.org/10.1144/gsjgs.154.3.0565

Pedersen, J.M., Ulrich, T., Nagel, T. & Tegner, C. 2020: Sulphide melt and aqueous fluid saturation in the PGE-Au mineralisation of the Skaergaard intrusion: evidence from melt inclusions. Contributions to Mineralogy and Petrology 175, 14, 1–20. https://doi.org/10.1007/s00410-020-1656-5

Pedersen, J.M., Ulrich, T., Whitehouse, M.J., Kent, A.J.R. & Tegner, C. 2021: The volatile and trace element composition of apatite in the Skaergaard intrusion, East Greenland. Contributions to Mineralogy and Petrology 176, 102, 1–23. https://doi.org/10.1007/s00410-021-01861-x

Philpotts, A.R. 1979: Silicate liquid immiscibility in tholeiitic basalts. Journal of Petrology 20, 99–118. https://doi.org/10.1093/petrology/20.1.99

Philpotts, A.R. 1982: Compositions of immiscible liquids in volcanic rocks. Contributions to Mineralogy and Petrology 80, 201–218. https://doi.org/10.1007/BF00371350

Philpotts, A.R. 2008: Comments on: Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology 49, 2171–2175. https://doi.org/10.1093/petrology/egn061

Philpotts, A.R. & Doyle, C.D. 1983: Effect of magma oxidation on the extent of silicate liquid immiscibility in a tholeiitic basalt. American Journal of Science 283, 967–986. https://doi.org/10.2475/ajs.283.9.967

Poldervaart, A. & Hess, H.H. 1951: Pyroxenes in the crystallization of basaltic magma. Journal of Geology 59, 472–489. https://doi.org/10.1086/625891

Presnall, D.C. 1966: The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. American Journal of Science 264, 753–809. https://doi.org/10.2475/ajs.264.10.753

Presnall, D.C. & Bateman, P.C. 1973: Fusion relations in the system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-SiO2-H2O and generation of granitic magmas in the Sierra Nevada batholith. Geological Society of America Bulletin 84, 3181–3202. https://doi.org/10.1130/0016-7606(1973)84<3181:FRITSN>2.0.CO;2

Presnall, D.C., Dixon, J.R., O’Donnell, T.H. & Dixon, S.A. 1979: Generation of mid-ocean ridge tholeiites. Journal of Petrology 20, 3–35. https://doi.org/10.1093/petrology/20.1.3

Prowatke, S. & Klemme, S. 2006: Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta 70, 4513–4527. https://doi.org/10.1016/j.gca.2006.06.162

Putirka, K.D. 2008: Thermometers and barometers for volcanic systems. In: Putirka, K.D. & Tepley, F.J. (eds): Minerals, Inclusions and Volcanic Processes. Reviews in Mineralogy and Geochemistry 69, 61–120. Chantilly, Virginia: Mineralogical Society of America and Geochemical Society. https://doi.org/10.2138/rmg.2008.69.3

Raedeke, L.D. & McCallum, I.S. 1984: Investigations in the Stillwater complex: Part II. Petrology and petrogenesis of the ultramafic series. Journal of Petrology 25, 395–420. https://doi.org/10.1093/petrology/25.2.395

Robinson, P. 1980: Chapter 9. The composition space of terrestrial pyroxenes; internal and external limits. In: Charles, T.P. (ed.): Pyroxenes 419–494. Berlin, Boston: De Gruyter. https://doi.org/10.1515/9781501508257-013

Roedder, E. 1978: Silicate liquid immiscibility in magmas and in the system K2O-FeO-Al2O3-SiO2: an example of serendipity. Geochimica et Cosmochimica Acta 42, 1597–1617. https://doi.org/10.1016/0016-7037(78)90250-8

Roedder, E. 1979: Chapter 2. Silicate liquid immiscibility in magmas. In: Evolution of the Igneous Rocks 15–58. Princeton: Princeton University Press. https://doi.org/doi:10.1515/9781400868506-003

Rudashevsky, N.S., McDonald, A.M., Cabri, L.J., Nielsen, T.D.F., Stanley, C.J., Kretser Y.L. & Rudashevsky, V.N. 2004: Skaergaardite, PdCu, a new platinum-group intermetallic from the Skaergaard intrusion, Greenland. Mineralogical Magazine 68, 603–620. https://doi.org/10.1180/0026461046840208

Rudashevsky, N.S., Nielsen, T.F.D. & Rudashevsky, V.N. 2023: The PGE-Au Mineralisation of the Skaergaard intrusion: precious metal minerals, petrography and ore genesis. GEUS Bulletin 54. 8306. https://doi.org/10.34194/geusb.v54.8306

Rutstein, M.S. 1971: Re-examination of the wollastonite-hedenbergite (CaSiO3-CaFeSi2O6) equilibria. American Mineralogist 56, 2040–2052.

Rutstein, M.S. & White, W. 1971: Vibrational spectra of high-calcium pyroxenes and pyroxenoids. American Mineralogist 56, 877–887.

Ryan, M.P. & Blevins, J.Y.K. 1987: The viscosity of synthetic and natural silicate melts and glasses at high temperatures and 1 bar (105 Pascals) pressure and at higher pressures. US Geological Survey Bulletin 1764, 1–29. https://doi.org/10.3133/b1764

Sack, R.O. & Ghiorso, M.S. 1994: Thermodynamics of multicomponent pyroxenes: I. Formulation of a general model. Contributions to Mineralogy and Petrology 116, 277–286. https://doi.org/10.1007/BF00306497

Sack, R.O., Walker, D. & Carmichael, I.S.E. 1987: Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids. Contributions to Mineralogy and Petrology 96, 1–23. https://doi.org/10.1007/BF00375521

Sallet, R. 2000: Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F-OH biotite-apatite thermometer grid. Lithos 50, 241–253. https://doi.org/10.1016/S0024-4937(99)00036-5

Salmonsen, L.P. & Tegner, C. 2013: Crystallization sequence of the Upper Border Series of the Skaergaard Intrusion: revised subdivision and implications for chamber-scale magma homogeneity. Contribution to Mineralogy and Petrology 165, 1155–1171. https://doi.org/10.1007/s00410-013-0852-y

Sato, M. & Valenza, M. 1980: Oxygen fugacities of the layered series of the Skaergaard intrusion, East Greenland. American Journal of Science 280(A), 134–158.

Saxena, S.K. 1973: Thermodynamics of Rock-Forming Crystalline Solutions. 180 pp. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-65558-6

Shaw, H.R. 1972: Viscosities of magmatic silicate liquids; an empirical method of prediction. American Journal of Science 272, 870–893. https://doi.org/10.2475/ajs.272.9.870

Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R. & Portnyagin, M.V. 2010: Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chemical Geology 277, 115–125. https://doi.org/10.1016/j.chemgeo.2010.07.014

Simkin, T. & Smith, J.V. 1970: Minor-element distribution in olivine. Journal of Geology 78, 304–325. https://doi.org/10.1086/627519

Sinton, J.M. & Detrick, R.S. 1992: Mid-ocean ridge magma chambers. Journal of Geophysical Research 97, 2211–2237. https://doi.org/10.1029/91JB02508

Snyder, D., Carmichael, I.S.E. & Wiebe, R.A. 1993: Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of Fe-Ti oxide precipitation on the T-fO2 and T-ρ paths of tholeiitic magmas. Contributions to Mineralogy and Petrology 113, 73–86. https://doi.org/10.1007/BF00320832

Sonnenthal, E.L. 1992: Geochemistry of dendritic anorthosites and associated pegmatites in the Skaergaard intrusion, East Greenland: Evidence for metasomatism by a chlorine-rich fluid. Journal of Volcanology and Geothermal Research 52, 209–230. https://doi.org/10.1016/0377-0273(92)90141-Y

Sonnenthal, E.L. & McBirney, A.R. 1998: The Skaergaard Layered Series. Part IV. Reaction-transport simulations of foundered blocks. Journal of Petrology 39, 633–661. https://doi.org/10.1093/petroj/39.4.633

Sparks, R.S.J., Annen, C., Blundy, J.D., Cashman, K.V., Rust, A.C. & Jackson, M.D. 2019: Formation and dynamics of magma reservoirs. Philosophical Transactions of the Royal Society A 377, 20180019 https://doi.org/10.1098/rsta.2018.0019

Stewart, B.W. & DePaolo, D.J. 1990: Isotopic studies of processes in mafic magma chambers: II. The Skaergaard Intrusion, East Greenland. Contributions to Mineralogy and Petrology 104, 125–141. https://doi.org/10.1007/BF00306438

Stolper, E. 1980: A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis. Contributions to Mineralogy and Petrology 74, 13–27. https://doi.org/10.1007/BF00375485

Storey, M., Duncan, R.A. & Tegner, C. 2007: Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot. Chemical Geology 241, 264–281. https://doi.org/10.1016/j.chemgeo.2007.01.016

Sun, S.-S. & McDonough, W.F. 1989: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (eds): Magmatism in the Ocean Basins, Geological Society of London, Special Publications 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

Tait, S.R. 1985: Fluid dynamic and geochemical evolution of cyclic unit 10, Rhum, Eastern Layered Series. Geological Magazine 122, 469–484. https://doi.org/10.1017/S0016756800035391

Tait, S.R. 1988: Samples from the crystallising boundary layer of a zoned magma chamber. Contributions to Mineralogy and Petrology 100, 470–483. https://doi.org/10.1007/BF00371376

Taylor, H.P. & Forester, R.W. 1979: An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55 M.Y. old fossil hydrothermal system. Journal of Petrology 20, 355–419. https://doi.org/10.1093/petrology/20.3.355

Tegner, C. 1997: Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contributions to Mineralogy and Petrology 128, 45–51. https://doi.org/10.1007/s004100050292

Tegner, C. & Cawthorn, R.G. 2010: Iron in plagioclase in the Bushveld and Skaergaard intrusions: implications for iron contents in evolving basic magmas. Contributions to Mineralogy and Petrology 159, 719–730. https://doi.org/10.1007/s00410-009-0450-1

Tegner, C., Lesher, C.E., Larsen, L.M. & Watt, W.S. 1998: Evidence from the rare-earth-element record of mantle melting and cooling of the Tertiary Iceland plume. Nature 395, 591–594. https://doi.org/10.1038/26956

Tegner, C., Brooks, C.K., Heister, L.E. & Bernstein, S. 2008: 40Ar–39Ar ages of intrusions in East Greenland: rift-to-drift transition over the Iceland hotspot. Lithos 101, 480–500. https://doi.org/10.1016/j.lithos.2007.09.001

Tegner, C., Thy, P., Holness, M.B., Jakobsen, J.K. & Lesher, C.E. 2009: Differentiation and compaction in the Skaergaard intrusion. Journal of Petrology 50, 813–840. https://doi.org/10.1093/petrology/egp020

Tegner, C., Salmonsen, L.P., Holness, M.B., Lesher, C.E., Humphreys, M.C.S., Thy, P. & Nielsen, T.F.D. 2023: A whole-rock data set for the Skaergaard intrusion, East Greenland. GEUS Bulletin, 53, 8316. https://doi.org/10.34194/geusb.v53.8316

Thy, P. 1983: Phase relations in transitional and alkali basaltic glasses from Iceland. Contributions to Mineralogy and Petrology 82, 232–251. https://doi.org/10.1007/BF01166618

Thy, P. 1989: Phase equilibrium constraints on the evolution of transitional and mildly alkalic Fe-Ti basalts in the rift zones of Iceland. In: Sinton, J.M. (ed.): Evolution of Mid Ocean Ridges, Geophysical Monograph 57, 39–51. Washington DC: American Geophysical Union. https://doi.org/10.1029/GM057p0039

Thy, P. 1995: Experimental constraints on the evolution of transitional and mildly alkalic basalts: crystallization of spinel. Lithos 36, 103–114. https://doi.org/10.1016/0024-4937(95)00009-5

Thy, P. 2003: Igneous petrology of gabbros from Hole 1105A: oceanic magma chamber processes. In: Casey, J.F. & Miller, D.J. (eds): Proceedings Ocean Drilling Program, Scientific Results 179, 1–76. College Station, TX (Ocean Drilling Program) https://doi.org/10.2973/odp.proc.sr.179.017.2003

Thy, P. & Dilek, Y. 2000: Magmatic and tectonic controls on the evolution of oceanic magma chambers at slow-spreading ridges: perspectives from ophiolitic and continental layered intrusions. In: Dilek, Y. et al. (eds): Ophiolites and Oceanic Crust: New Insight from Field Studies and the Ocean Drilling Program. Geological Society of America, Special Paper 349, 87–104. https://doi.org/10.1130/0-8137-2349-3.87

Thy, P. & Dilek, Y. 2003: Development of ophiolitic perspectives on models of oceanic magma chambers beneath active spreading centers. In: Dilek, Y. & Newcomb, S. (eds): Ophiolite Concept and Evolution of Geological Thought. Geological Society of America, Special Paper 373, 187–226. https://doi.org/10.1130/0-8137-2373-6.187

Thy, P. & Lofgren, G.E. 1992: Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: multisaturated liquids and coexisting augites. Contributions to Mineralogy and Petrology 112, 196–202. https://doi.org/10.1007/BF00310454

Thy, P. & Lofgren, G.E. 1994: Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti oxide minerals and the origin of basaltic andesites. Contributions to Mineralogy and Petrology 116, 340–351. https://doi.org/10.1007/BF00306502

Thy, P., Schiffman, P. & Moores, E.M. 1989: Igneous Mineral Stratigraphy and Chemistry of the Cyprus Crustal Study Project Drill Core in the Plutonic Sequences of the Troodos Ophiolite. In: Gibson, I.L. et al. (eds): Initial Report, Hole CY-4. Geological Survey of Canada, Paper 88–9, 147–185. https://doi.org/10.4095/127329

Thy, P., Beard, J.S. & Lofgren, G.E. 1990: Experimental constraints on the origin of Icelandic rhyolites. Journal of Geology 98, 417–421. https://doi.org/10.1086/629413

Thy, P., Lesher, C.E. & Fram, M.S. 1998: Low pressure experimental constraints on the evolution of basaltic lavas from Site 917, Southeast Greenland Continental Margin. Proceedings of the Ocean Drilling Program, Scientific Results 152, 359–372. https://doi.org/10.2973/odp.proc.sr.152.235.1998

Thy, P., Lesher, C.E. & Mayfield, J.D. 1999: Low-pressure melting studies of basalt and basaltic andesite from the Southeast Greenland Continental Margin and the origin of dacites at Site 917. Proceedings of the Ocean Drilling Program, Scientific Results, 163, 95–112. https://doi.org/10.2973/odp.proc.sr.163.114.1999

Thy, P., Lesher, C.E., Nielsen, T.F.D. & Brooks, C.K. 2006: Experimental constraints on the Skaergaard liquid line of descent. Lithos 92, 154–180. https://doi.org/10.1016/j.lithos.2006.03.031

Thy, P., Lesher, C.E., Nielsen, T.F.D. & Brooks, C.K. 2008: On the Skaergaard intrusion and forward modeling of its liquid line of descent: a reply to ‘Principles of applied experimental igneous petrology’ by Morse, 2008, Lithos 105, 395–399. Lithos 105, 401–411. https://doi.org/10.1016/j.lithos.2008.04.007

Thy, P., Lesher, C.E. & Tegner, C. 2009a: The Skaergaard liquid line of descent revisited. Contributions to Mineralogy and Petrology 157, 735–747. https://doi.org/10.1007/s00410-008-0361-6

Thy, P., Tegner, C. & Lesher, C.E. 2009b: Liquidus temperatures of the Skaergaard magma. American Mineralogist 94, 1371–1376. https://doi.org/10.2138/am.2009.3058

Thy, P., Lesher, C.E. & Tegner, C. 2013: Further work on experimental plagioclase equilibria and the Skaergaard liquidus temperature. American Mineralogist 98, 1360–1367. https://doi.org/10.2138/am.2013.4044

Tilley, C.E., Yoder, H.S. & Schairer, J.F. 1963: Melting relations of basalts. Carnegie Institution of Washington Yearbook 62, 77–84.

Tollari, N., Toplis, M.J. & Barnes, S.-J. 2006: Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta 70, 1518–1536. https://doi.org/10.1016/j.gca.2005.11.024

Toplis, M.J. & Carroll, M.R. 1995: An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Journal of Petrology 36, 1137–1170. https://doi.org/10.1093/petrology/36.5.1137

Toplis, M.J. & Carroll, M.R. 1996: Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: implications for the Skaergaard intrusion and other natural systems. Journal of Petrology 37, 837–858. https://doi.org/10.1093/petrology/37.4.837

Toplis, M.J., Brown, W.L. & Pupier, E. 2008: Plagioclase in the Skaergaard intrusion. Part 1: Core and rim compositions in the layered series. Contributions to Mineralogy and Petrology 155, 329–340. https://doi.org/10.1007/s00410-007-0245-1

Turcotte, D.L. 1982: Magma migration. Annual Review of Earth and Planetary Sciences 10, 397–408. https://doi.org/10.1146/annurev.ea.10.050182.002145

Tuttle, O.F. & Bowen, N.L. 1958: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoirs 74. https://doi.org/10.1130/mem74

Veksler, I.V. 2009: Extreme iron enrichment and liquid immiscibility in mafic intrusions: experimental evidence revisited. Lithos 111, 72–82. https://doi.org/10.1016/j.lithos.2008.10.003

Veksler, I.V. & Charlier, B. 2015: Silicate liquid immiscibility in layered intrusions. In: Charlier, B. et al. (eds): Layered Intrusions, 229–258. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9652-1_5

Veksler, I.V., Dorfman, A.M., Danyushevsky, L.V., Jakobsen, J.K. & Dingwell, D.B. 2006: Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology 152, 685–702. https://doi.org/10.1007/s00410-006-0127-y

Veksler, I.V., Dorfman, A.M., Borisov, A.A., Wirth, R. & Dingwell, D.B. 2007: Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology 48, 2187–2210. https://doi.org/10.1093/petrology/egm056

Veksler, I.V., Dorfman, A.M., Borisov, A.A., Wirth, R. & Dingwell, D.B. 2008: Liquid immiscibility and the evolution of basaltic magma: reply to S.A. Morse, A.R. McBirney and A.R. Philpotts. Journal of Petrology 49, 2177–2186. https://doi.org/10.1093/petrology/egn064

Veksler, I.V., Morse, S.A. & Philpotts, A.R. 2009: Controversies of consequences. Discussion of liquid immiscibility in the Skaergaard intrusion. Geochemical News 139, Geochemical Society. https://www.geochemsoc.org/files/3015/3608/9023/GNews_139_April_2009.pdf (accessed October 2023)

Veksler, I.V., Kähn, J., Franz, G. & Dingwell, D.B. 2010: Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing. American Mineralogist 95, 1679–1685. https://doi.org/10.2138/am.2010.3456

Villiger, S., Ulmer, P., Müntener, O. & Thompson, A.B. 2004: The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization – an experimental study at 1·0 GPa. Journal of Petrology 45, 2369–2388. https://doi.org/10.1093/petrology/egh042

Vincent, E.A. 1960: Ulvöspinel in the Skaergaard intrusion, Greenland. Neues Jahrbuch für Mineralogie Abhandlungen 94, 993–1016.

Vincent, E.A. & Phillips, R. 1954: Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland. Part I. Chemistry and ore microscopy. Geochimica et Cosmochimica Acta 6, 1–26. https://doi.org/10.1016/0016-7037(54)90026-5

Vukmanovic, Z., Holness, M.B., Monks, K. & Andersen, J.C.Ø. 2018: The Skaergaard trough layering: sedimentation in a convecting magma chamber. Contributions to Mineralogy and Petrology 173, 43, 18 pp. https://doi.org/10.1007/s00410-018-1466-1

Wager, L.R. 1960: The major element variation of the layered series of the Skaergaard intrusion and a re-estimation of the average composition of the hidden layered series and the successive residual magmas. Journal of Petrology 1, 364–398. https://doi.org/10.1093/petrology/1.3.364

Wager, L.R. 1961: A note on the origin of ophitic texture in the chilled olivine gabbro of the Skaergaard intrusion. Geological Magazine 98, 353–366. https://doi.org/10.1017/S0016756800060829

Wager, L.R. 1963: The mechanism of adcumulus growth in the layered series of the Skaergaard intrusion. Mineralogical Society of America, Special Paper 1, 1–9.

Wager, L.R. & Brown, G.M. 1967: Layered Igneous Rocks. San Francisco: Freeman. 589 pp.

Wager, L.R. & Deer, W.A. 1939: Geological Investigations in East Greenland: Part III. The Petrology of the Skaergaard Intrusion, Kangerdlugssuaq, East Greenland. Meddelelser om Grønland 105(4).

Wager, L.R. & Mitchell, R.L. 1951: The distribution of trace elements during strong fractionation of basic magma – a further study of the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta 1, 129–208. https://doi.org/10.1016/0016-7037(51)90016-6

Wager, L.R., Vincent, E.A. & Smales, A.A. 1957: Sulphides in the Skaergaard intrusion, East Greenland. Economic Geology 52, 855–903. https://doi.org/10.2113/gsecongeo.52.8.855

Wager, L.R., Brown, G.M. & Wadsworth, W.J. 1960: Types of igneous cumulates. Journal of Petrology 1, 73–85. https://doi.org/10.1093/petrology/1.1.73

Walker, D. & Mullins, O. 1981: Surface tension of natural silicate melts from 1,200°–1,500° C and implications for melt structure. Contributions to Mineralogy and Petrology 76, 455–462. https://doi.org/10.1007/BF00371487

Walker, D., Shibata, T. & DeLong, S.E. 1979: Abyssal tholeiites from the Oceanographer Fracture Zone. II. Phase equilibria and mixing. Contribution to Mineralogy and Petrology 70, 111–125. https://doi.org/10.1007/BF00374440

Watson, E.B. 1976: Two-liquid partition coefficients: experimental data and geochemical implications. Contributions to Mineralogy and Petrology 56, 119–134. https://doi.org/10.1007/BF00375424

Watson, E.B. 1979: Apatite saturation in basic to intermediate magmas. Geophysical Research Letters 6, 937–940. https://doi.org/10.1029/GL006i012p00937

Watson, E.B. & Capobianco, C.J. 1981: Phosphorus and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geochimica et Cosmochimica Acta 45, 2349–2358. https://doi.org/10.1016/0016-7037(81)90088-0

Watson, E.B. & Green, T.H. 1981: Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters 56, 405–421. https://doi.org/10.1016/0012-821X(81)90144-8

Watts, Griffis & McOuat Ltd. 1991: 1990 Skaergaard project, Platinova/Corona concession, East Greenland. Exploration report, 55 pp. Geological Survey of Denmark and Greenland unpublished report, GRF 20848.

Whitaker, M.L., Nekvasil, H., Lindsley, D.H. & Difrancesco 2007: The role of pressure in producing compositional diversity in intraplate basaltic magmas. Journal of Petrology 48, 365–393. https://doi.org/10.1093/petrology/egl063

Williams, R.J. 1971: Reaction constants in the system Fe-MgO-SiO2-O2: intensive parameters in the Skaergaard intrusion, East Greenland. American Journal of Science 271, 132–146. https://doi.org/10.2475/ajs.271.2.132

Wilson, J.R. & Larsen, S.B. 1985: Two-dimensional study of a layered intrusion – the Hyllingen Series, Norway. Geological Magazine 122, 97–124. https://doi.org/10.1017/S0016756800031022

Wilson, J.R. & Sørensen, H.S. 1996: The Fongen-Hyllingen Layered Intrusive Complex, Norway. In: Cawthorn, R.G. (ed.): Developments in Petrology 15, 303–329: Elsevier. https://doi.org/10.1016/S0167-2894(96)80011-X

Wilson, J.R., Esbensen, K.H. & Thy, P. 1981: Igneous petrology of the synorogenic Fongen-Hyllingen layered basic complex, South-Central Scandinavian Caledonides. Journal of Petrology 22, 584–627. https://doi.org/10.1093/petrology/22.4.584

Wotzlaw, J.-F., Bindeman, I.N., Schaltegger, U., Brooks, C.K. & Naslund, H.R. 2012: High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth and Planetary Science Letters 355–356, 199–212. https://doi.org/10.1016/j.epsl.2012.08.043

Wright, J.B. 1961: Solid-solution relationships in some titaniferous iron oxide ores of basic igneous rocks. Mineralogical Magazine 32, 778–789. https://doi.org/10.1180/minmag.1961.032.253.04

Wyllie, P.J. 1963: Effects of the changes in slope occurring on liquidus and solidus paths in the system diopside-anorthite-albite. Mineralogical Society of America, Special Publication 1, 204–212.

Yang, H.-J., Kinzler, R.J. & Grove, T.L. 1996: Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contributions to Mineralogy and Petrology 124, 1–18. https://doi.org/10.1007/s004100050169

Yoder, H.S. & Sahama, T.G. 1957: Olivine X-ray determinative curve. American Mineralogist 42, 475–491.

Yoder, H.S., Tilley, C.E. & Schairer, J.F. 1963: Pyroxenes and associated minerals in the crust and mantle. Pyroxene quadrilateral. Carnegie Institution Washington, Yearbook 62, 84–94.

Zeh, A., Ovtcharova, M., Wilson, A.H. & Schaltegger, U. 2015: The Bushveld Complex was emplaced and cooled in less than one million years – results of zirconology, and geotectonic implications. Earth and Planetary Science Letters 418, 103–114. https://doi.org/10.1016/j.epsl.2015.02.035

Mountains with sea in foreground

Published

22-12-2023

How to Cite

Thy, P., Tegner, C., & Lesher, C. E. (2023). Petrology of the Skaergaard Layered Series. GEUS Bulletin, 56. https://doi.org/10.34194/geusb.v56.8327

Most read articles by the same author(s)