Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland

Authors

  • Jørgen A Bojesen-Koefoed Department for Mapping and Mineral Resources, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-5647-2769
  • Peter Alsen Department for Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-6218-9054
  • Morten Bjerager Department for Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0003-3180-8857
  • Jussi Hovikoski Department for Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark; Geological Survey of Finland (GTK), Espoo, Finland https://orcid.org/0000-0001-6330-8713
  • Peter N Johannessen Geological Survey of Denmark and Greenland (GEUS), now retired
  • Henrik Nøhr-Hansen Department for Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0002-9291-8104
  • Henrik I Petersen Department for Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-6606-7062
  • Stefan Piasecki Department for Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark; Globe Institute, University of Copenhagen, Copenhagen, Denmark; Retired https://orcid.org/0000-0002-7846-859X
  • Henrik Vosgerau Department for Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0002-7582-5360

DOI:

https://doi.org/10.34194/geusb.v55.8320

Keywords:

North-East Greenland, organic geochemistry, palaeogeography, source rock, Upper Jurassic

Abstract

The Oxfordian–Ryazanian was a period of widespread deposition of marine organic-rich mudstones in basins formed during the early phases of the rifting that heralded the formation of the present-day North Atlantic. Occasionally, uninterrupted deposition prevailed for 20 million years or more. Today, mudstones of this time interval are found on the shelves bordering the North Atlantic and adjacent areas from Siberia to the Netherlands. Here, we report data on two fully cored boreholes from Wollaston Forland (North-East Greenland, approx. 74° N), which represent an uninterrupted succession from the upper Kimmeridgian to the Hauterivian. The boreholes record basin development at two different positions within an evolving halfgraben, located at the margin of the main rift, and thus partially detached from it. Although the overall depositional environment remained an oxygen-restricted deep-shelf setting, rifting-related changes can be followed through the succession. The Kimmeridgian was a period of eustatic highstand and records the incipient rifting with a transgressive trend straddling the transition to the lower Volgian by a gradual change from deposits with high levels of total organic carbon (TOC) and kerogen rich in allochthonous organic matter to deposits with lower TOC and a higher proportion of autochthonous organic matter. This is followed by a slight regressive trend with lower TOC and increased proportions of allochthonous organic matter until rifting culminated in the middle Volgian–Ryazanian, indicated by increasing autochthonous organic matter and higher TOC, which prevailed until basin ventilation occurred towards the end of the Ryazanian. The properties of the reactive kerogen fraction remained rather stable irrespective of TOC, underlining the effect of terrigenous matter input for TOC. These variations are also captured by biological markers and stable carbon isotopes. The deposits are very similar to equivalent successions elsewhere in the proto-North Atlantic region, albeit the proportion of terrigenous kerogen is greater.

Downloads

Download data is not yet available.

References

Alsen, P. & Mutterlose, J. 2009: The early Cretaceous of North-East Greenland: a crossroads of belemnite migration. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 168–182. https://doi.org/10.1016/j.palaeo.2009.06.011

Alsen, P., Piasecki, S., Nøhr-Hansen, H., Pauly, S., Sheldon, E. & Hovikoski, J. 2023: Stratigraphy of the Upper Jurassic to lowermost Cretaceous in the Rødryggen-1 and Brorson Halvø-1 boreholes, Wollaston Forland, North-East Greenland. GEUS Bulletin 55, 8342 (this volume). https://doi.org/10.34194/geusb.v55.8342

Bjerager, M., Alsen, P., Bojesen-Koefoed, J., Fyhn, M.B.W., Hovikoski, J., Ineson, J., Nøhr-Hansen, H., Nielsen, L.H., Piasecki, S. & Vosgerau, H. 2020: Cretaceous lithostratigraphy of North-East Greenland. Bulletin of the Geological Society of Denmark 68, 37–93.

Birkelund, T. & Perch-Nielsen, K. 1976: Late Palaeozoic – Mesozoic evolution of central East Greenland. In: Escher, A. & Watt, W.S. (eds): Geology of Greenland. Geological Survey of Greenland 304–339.

Bojesen-Koefoed, J.A., et al. 2020: A mid-Cretaceous petroleum source-rock in the North Atlantic region? Implications of the Nanok-1 fully cored borehole, Hold with Hope, northeast Greenland. Marine and Petroleum Geology 117, 104414. https://doi.org/10.1016/j.marpetgeo.2020.104414

Bojesen-Koefoed, J.A, Alsen, P., Bjerager, M., Hovikoski, J., Ineson, J.R., Johannessen, P., Olivarius, M., Piasecki, S. & Vosgerau, H. 2023: The Rødryggen-1 and Brorson Halvø-1 fully cored boreholes (Upper Jurassic – Lower Cretaceous), Wollaston Forland, North-East Greenland – an introduction. GEUS Bulletin 55, 8350 (this volume). https://doi.org/10.34194/geusb.v55.8350

Bojesen-Koefoed, J.A., Bjerager, M., Nytoft, H.P, Petersen, H.I., Piasecki, S. & Pilgaard, A. 2018: Petroleum potential of the Upper Jurassic Hareelv Formation, Jameson Land, East Greenland. Geological Survey of Denmark and Greenland Bulletin 42, 85–113. https://doi.org/10.34194/geusb.v42.4314

Bonow, J.M. & Japsen, P. 2021: Peneplains and tectonics in North-East Greenland after opening of the North-East Atlantic. GEUS Bulletin 45(1), 5297. https://doi.org/10.34194/geusb.v45.5297

Chakhmakhchev, A., Sampei, Y. & Suzuki, N. 1994: Geochemical characteristics of oils and source rocks in the Yamal peninsula, West Siberia, Russia. Organic Geochemistry 22, 311–322. https://doi.org/10.1016/0146-6380(94)90177-5

Christiansen, F.G., Dam, G., Piasecki, S. & Stemmerik, L. 1992: A review of Upper Palaeozoic and Mesozoic source rocks from onshore East Greenland. In: Spencer, A.M. (ed.): Generation, accumulation and production of Europe’s hydrocarbons II. Special Publication of the European Association of Petroleum Geologists 2, 151–161.

Chung, H.M., Rooney, M.A., Toon, M.B. & Claypool, G.E. 1992: Carbon Isotope composition of marine crude oils (1). AAPG Bulletin 76, 1000–1007. https://doi.org/10.1306/bdff8952-1718-11d7-8645000102c1865d

Clayton, J.L. & Swetland, P.J. 1978: Subaerial weathering of sedimentary organic matter. Geochimica et Cosmochimica Acta 42, 305–312. https://doi.org/10.1016/0016-7037(78)90183-7

Dahl, B., Bojesen-Koefoed, J.A., Holm, A., Justwan, H., Rasmussen, E. & Thomsen, E. 2004: 05/00955 A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. Organic Geochemistry 35, 1461–1477. https://doi.org/10.1016/j.orggeochem.2004.07.003

Fowler, M.G. & McAlpine, K.D. 1995: The Egret member, a prolific Kimmeridgian source rock from offshore eastern Canada. In: Katz, B.J. (ed.): Petroleum source rocks. Springer-Ver- lag 111–130.

Fyhn, M.B.W. et al. 2021a: Central East and NE Greenland composite tectono-sedimentary element, East Greenland Rifted Margin, Greenland Sea. Geological Society, London, Memoirs 57, M57. https://doi.org/10.1144/M57-2017-15

Fyhn, M.B.W., Hopper, J.R., Sandrin, A., Lauridsen, B.W., Heincke, B.H., Nøhr-Hansen, H., Andersen, M.S., Alsen, P. & Nielsen, T. 2021b: Three-phased latest Jurassic–Eocene rifting and mild mid-Cenozoic compression offshore NE Greenland. Tectonophysics 815, 228990. https://doi.org/10.1016/j.tecto.2021.228990

Henstra, G.A., et al. 2016: Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018

Higgins, A.K. 2010: Exploration history and place names of northern East Greenland. Geological Survey of Denmark and Greenland Bulletin 21, 368 pp. https://doi.org/10.34194/geusb.v21.4735

Hovikoski, J. et al. 2023a: Late Jurassic – Early Cretaceous marine deoxygenation in NE Greenland. Journal of the Geological Society 180(3), jgs2022–058. https://doi.org/10.1144/jgs2022-058.

Hovikoski, J., Ineson, J.R, Olivarius, M., Bojesen-Koefoed, J.A, Piasecki, S. & Alsen, P. 2023b: Upper Jurassic – Lower Cretaceous of eastern Wollaston Forland, North-East Greenland: a distal marine record of an evolving rift. GEUS Bulletin 55, 8349 (this volume). https://doi.org/10.34194/geusb.v55.8349

Hovikoski, J., Uchman, A., Alsen, P. & Ineson, J. 2018: Ichnological and sedimentological characteristics of submarine Fan-Delta deposits in a Half-Graben, Lower Cretaceous Palnatokes Bjerg Formation, NE Greenland. Ichnos 26, 28–57. https://doi.org/10.1080/10420940.2017.1396981

Ineson, J.R. & Bojesen-Koefoed, J.A. (eds) 2018: Petroleum geology of the Upper Jurassic – Lower Cretaceous of East and Northeast Greenland: Blokelv-1 borehole, Jameson Land Basin. Geological Survey of Denmark and Greenland Bulletin 42, 168 pp. https://doi.org/10.34194/geusb.v42

Ineson, J.R., Bojesen-Koefoed, J.A., Dybkjær, K. & Nielsen, L.H. 2003: Volgian–Ryazanian ‘hot shales’ of the Bo Member (Farsund Formation) in the Danish Central Graben, North Sea: stratigraphy, facies and geochemistry. Geological Survey of Denmark and Greenland Bulletin 1, 403–436. https://doi.org/10.34194/geusb.v1.4679

Isaksen, G.H & Ledje H.I. 2001: Source rock quality and hydrocarbon migration pathways within the greater Utsira High area, Viking Graben, Norwegian North Sea. AAPG Bulletin 85(5), 861–883. https://doi.org/10.1306/8626ca23-173b-11d7-8645000102c1865d

Justwan, H. & Dahl, B. 2005: Quantitative hydrocarbon potential mapping and organofacies study in the Greater Balder Area, Norwegian North Sea. Geological Society, London, Petroleum Geology Conference Series 6(1), 1317–1329. https://doi.org/10.1144/0061317

Justwan, H., Dahl, B., Isaksen, G.H. & Meisingset, I. 2005: Late to middle Jurassic source facies and quality variations, South Viking Graben, North Sea. Journal of Petroleum Geology 28(3), 241–268. https://doi.org/10.1111/j.1747-5457.2005.tb00082.x

Justwan, H., Dahl, B. & Isaksen, G.H. 2006a: Geochemical characterisation and genetic origin of oils and condensates in the South Viking Graben, Norway. Marine and Petroleum Geology 23(2), 213–239. https://doi.org/10.1016/j.marpetgeo.2005.07.003

Justwan, H., Meisingset, I., Dahl, B. & Isaksen, G.H. 2006b: Geothermal history and petroleum generation in the Norwegian South Viking Graben revealed by pseudo-3D basin modelling. Marine and Petroleum Geology 23(8), 791–819. https://doi.org/10.1016/j.marpetgeo.2006.07.001

Klemme, H.D. 1994: Petroleum systems of the World involving Upper Jurassic source rocks. In: Magoon, L.B & Dow, W.G (eds): The petroleum system from source to trap. AAPG Memoir 60, 51–72. https://doi.org/10.1306/M60585C3

Leythaeuser, D. 1973: Effects of weathering on organic matter in shales. Geochimica et Cosmochimica Acta 37(1), 113–120. https://doi.org/10.1016/0016-7037(73)90249-4

Littke, R., Klussmann, U., Krooss, B. & Leythaeuser, D. 1991: Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochimica et Cosmochimica Acta 55(11), 3369–3378. https://doi.org/10.1016/0016-7037(91)90494-p

Miller, R.G. 1990: A paleoceanographic approach to the Kimmeridge Clay Formation. In: Huc, A.Y. (ed.): Deposition of organic facies. AAPG Studies in Geology 30, 13–26. https://doi.org/10.1306/st30517c2

Morgans-Bell, H.S., Coe, A.I., Hesselbo, S.P., Jenkyns, H.C., Weedon, G.P., Marshall, J.E.A., Tyson, R.V. & Williams, C.J. 2001: Integrated stratigraphy of the Kimmeridge clay formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK. Geological Magazine 138(5), 511–539. https://doi.org/10.1017/s0016756801005738

Möller, C., Mutterlose, J. & Alsen, P. 2015: Integrated stratigraphy of Lower Cretaceous sediments (Ryazanian–Hauterivian) from North-East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 437, 85–97. https://doi.org/10.1016/j.palaeo.2015.07.014

Nytoft, H.P. 2011: Novel side chain methylated and hexacyclic hopanes: identification by synthesis, distribution in a worldwide set of coals and crude oils and use as markers for oxic depositional environments. Organic Geochemistry 42(5), 520–539. https://doi.org/10.1016/j.orggeochem.2011.03.006

Pan, S., Liao, Y., Jiang, B., Wan, Z. & Wang, F. 2022: Impact of natural weathering on source rocks: organic and inorganic geochemical evidence from the Triassic Chang 7 outcrop profile in Tongchuan of the Southern Ordos Basin (China). International Journal of Coal Geology 263, 104119. https://doi.org/10.1016/j.coal.2022.104119

Pauly, S., Mutterlose, J. & Alsen, P 2012: Lower Cretaceous (upper Ryazanian–Hauterivian) chronostratigraphy of high latitudes (North-East Greenland). Cretaceous Research 34, 308–326. https://doi.org/10.1016/j.cretres.2011.11.011

Pepper, A.S. & Corvi, P.J. 1995a: Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology 12(3), 291–319. https://doi.org/10.1016/0264-8172(95)98381-e

Pepper, A.S. & Corvi, P.J., 1995b: Simple kinetic models of petroleum formation, Part III: modelling an open system. Marine and Petroleum Geology 12(4), 417–452. https://doi.org/10.1016/0264-8172(95)96904-5

Petsch, S.T., Berner, R.A. & Eglinton, T.I. 2000: A field study of the chemical weathering of ancient sedimentary organic matter. Organic Geochemistry 31(5), 475–487. https://doi.org/10.1016/s0146-6380(00)00014-0

Peters, K.E., Walters, C.C. & Moldowan, J.M. 2005: The biomarker guide, volumes 1+2, 1155 pp. Cambridge University Press.

Petersen, H.I., Nytoft, H.P., Vosgerau, H., Andersen, C., Bojesen-Koefoed, J.A. & Mathiesen, A. 2010: Source rock quality and maturity and oil types in the NW Danish Central Graben: implications for petroleum prospectivity evaluation in an Upper Jurassic sandstone play area. Geological Society, London, Petroleum Geology Conference Series 7(1), 95–111. https://doi.org/10.1144/0070095

Piasecki, S., Bojesen-Koefoed, J.A. & Alsen, P. 2020: Geology of the Lower Cretaceous in the Falkebjerg area, Wollaston Forland, northern East Greenland. Bulletin of the Geological Society of Denmark 68, 155–170. https://doi.org/10.37570/bgsd-2020-68-07

Radke, M., Willsch, H. & Welte, D.H. 1980: Preparative hydrocarbon group determination by automated medium pressure liquid chromatography. Analytical Chemistry 52(3), 406–411. https://doi.org/10.1021/ac50053a009

Raiswell, R. & Berner, R.A. 1986: Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50(9), 1967–1976. https://doi.org/10.1016/0016-7037(86)90252-8

Requejo, A.G., Hollywood, J. & Halpern, H.I. 1989: Recognition and source correlation of migrated hydrocarbons in Upper Jurassic Hareelv Formation, Jameson Land, East Greenland. AAPG Bulletin 73(9), 1065–1088. https://doi.org/10.1306/44b4a53c-170a-11d7-8645000102c1865d

Sass, H. & Cypionka, H. 2007: Response of sulphate-reducing bacteria to oxygen. In: Barton, L. & Hamilton, W. (eds): Sulphate-reducing bacteria: Environmental and engineered systems, 167–184. Cambridge University Press. https://doi.org/10.1017/CBO9780511541490.006

Scotchman, I.C, Doré, A.G. & Spencer, A.M. 2016: Petroleum systems and results of exploration on the Atlantic margins of the UK, Faroes & Ireland: what have we learnt? Geological Society, London, Petroleum Geology Conference series 8(1), 187–197. https://doi.org/10.1144/PGC8.14

Searl, A. 1994: Diagenetic destruction of reservoir potential in shallow marine sandstones of the Broadford Beds (Lower Jurassic), north-west Scotland: depositional versus burial and thermal history controls on porosity destruction. Marine and Petroleum Geology 11(2), 131–147. https://doi.org/10.1016/0264-8172(94)90090-6

Sneider, J.S., DeClarens, P. & Vail, P.R. 1995: Sequence stratigraphy of the Middle to Upper Jurassic, Viking Graben, North Sea. In: Steel, R.J. et al. (eds): Sequence stratigraphy on the Northwest European margin. Norwegian Petroleum Society Special Publications 5, 167–197. https://doi.org/10.1016/s0928-8937(06)80068-8

Strogen, D.P., Burwood, R. & Whitham, A.G. 2005: Sedimentology and geochemistry of Late Jurassic organic-rich shelfal mudstones from East Greenland: regional and stratigraphic variations in source-rock quality. Geological Society, London, Petroleum Geology Conference Series 6(1), 903–912. https://doi.org/10.1144/0060903

Surlyk, F. 1978: Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic–Cretaceous boundary, East Greenland). Bulletin Grønlands Geologiske Undersøgelse 128, 117. https://doi.org/10.34194/bullggu.v128.6670

Surlyk, F. 1984: Fan-delta to submarine fan conglomerates of the Volgian-Valanginian Wollaston Forland Group, East Greenland. In: Koster, E.H. & Steel, R.J. (eds): Sedimentology of gravel and conglomerates. Canadian Society of Petroleum Geologists Memoir 10, 359–382.

Surlyk, F. 1990: A Jurassic sea-level curve for East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 78, 71–85. https://doi.org/10.1016/0031-0182(90)90205-l

Surlyk, F. 2003: The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. In: Ineson, J.R. & Surlyk, F. (eds): The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin 1, 659–722. https://doi.org/10.34194/geusb.v1.4644

Surlyk, F. et al. 2021: Jurassic stratigraphy of East Greenland. GEUS Bulletin 46. 6521. https://doi.org/10.34194/geusb.v46.6521

Surlyk, F. & Clemmensen, L.B. 1983: Rift propagation and eustacy as controlling factors during Jurassic inshore and shelf sedimentation in Northern East Greenland. Sedimentary Geology 34, 119–143. https://doi.org/10.1016/0037-0738(83)90083-0

Surlyk, F. & Korstgård, J. 2013: Crestal unconformities on an exposed Jurassic tilted fault block, Wollaston Forland, East Greenland as an analogue for buried hydrocarbon traps. Journal of Marine and Petroleum Geology 44, 82−95. https://doi.org/10.1016/j.marpetgeo.2013.03.009

Tang, X., Zhang, J., Liu,Y., Yang, C., Chen, Q., Dang, W. & Zhao, P. 2018: Geochemistry of organic matter and elements of black shale during weathering in Northern Guizhou, Southwestern China: Their mobilization and interconnection. Geochemistry 78(1), 140–151 http://dx.doi.org/10.1016/j.chemer.2017.08.002

Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. & Robert, P. 1998: Organic Petrology, 704 pp. Gebruder Borntraeger.

Telnæs, N., Isaksen, G.H. & Douglas, A.G. 1994: A geochemical investigation of samples from the Volgian Bazhenov Formation, Western Siberia, Russia. Organic Geochemistry 21(5), 545–558. https://doi.org/10.1016/0146-6380(94)90105-8

Vischer, A. 1943: Die postdevonische Tektonik von Ostgrönland zwischen 74° und 75° N. Br. Kuhn Ø, Wollaston Forland, Clavering Ø und angrenzende Gebiete. Meddelelser om Grønland 133(1), 195.

von der Dick, H., Meloche, J.D., Dwyer, J. & Gunther, P. 1989: Source-rock geochemistry and hydrocarbon generation in the Jeanne d’Arc Basin, Grand Banks, offshore eastern Canada. Journal of Petroleum Geology 12, 51–68. https://doi.org/10.1111/j.1747-5457.1989.tb00220.x

Geochemistry for Wollaston Forland boreholes

Published

21-12-2023

How to Cite

Bojesen-Koefoed, J. A., Alsen, P., Bjerager, M., Hovikoski, J., Johannessen, P. N., Nøhr-Hansen, H., Petersen, H. I., Piasecki, S., & Vosgerau, H. (2023). Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland. GEUS Bulletin, 55. https://doi.org/10.34194/geusb.v55.8320

Most read articles by the same author(s)

1 2 3 4 > >>