Mudstone diagenesis and sandstone provenance in an Upper Jurassic – Lower Cretaceous evolving half-graben system, Wollaston Forland, North-East Greenland

Authors

  • Mette Olivarius Department of Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0003-3853-7543
  • Afsoon M Kazerouni Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0002-8155-8879
  • Rikke Weibel Department for Geo-energy and Storage, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0001-6311-2593
  • Thomas F Kokfelt Department for Mapping and Mineral Resources, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark https://orcid.org/0000-0003-1941-920X
  • Jussi Hovikoski Department for Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark; Geological Survey of Finland (GTK), Espoo, Finland https://orcid.org/0000-0001-6330-8713

DOI:

https://doi.org/10.34194/geusb.v55.8309

Keywords:

diagenetic processes, mudstone mineralogy, petrography, provenance analysis, rifting

Abstract

The influence of rifting on the composition of Kimmeridgian to Barremian mudstones from northern Wollaston Forland, North-East Greenland is investigated by petrographic and mineralogical analyses of the Brorson Halvø-1 and Rødryg­gen-1 cores, and provenance of analysis by zircon U-Pb age dating of nearby sandstones. Mudstone composition varies systematically as a function of the timing of rifting progression and position in the half-graben depositional system. Pyrite primarily precipitated in the early rift to rift climax phases. Euhedral pyrite overgrowths on framboids formed only during the rift climax phase (Lindemans Bugt Formation). Dolomite is the dominant carbonate cement, except for the sediments deposited in the early waning rift phase (Palnatokes Bjerg Formation) where calcite is dominant, and in the late waning rift phase (Stratumbjerg Formation) where siderite dominates. The highest-temperature reactions with precipitation of illite, quartz, ankerite and barite signify sediment burial depths of >2 km prior to exhumation. Uplift-induced fracturing occurred mainly in the early rift to rift acceleration succession (Bernbjerg Formation). Mudstones in the proximal part of the half-graben (Rødryggen-1) include more detrital kaolinite than the distal mudstones (Brorson Halvø-1), which contain more mixed-layer illite-smectite and illite. Vermiculite was deposited only in the proximal part of the basin in the rift climax and waning rift successions. Chlorite was deposited proximally and distally during the waning rift phase, though supply began earlier in the distal part. Fine-grained sediment in the distal part of the half-graben was therefore probably supplied by axial transport from Palaeoproterozoic crystalline rocks and Meso- to Neoproterozoic metamorphic rocks located to the north and north-west. This agrees with the zircon provenance signature from outcropping sand-rich facies, where zircon grains with U-Pb ages of 2.0–1.6 Ga are dominant, in addition to common 1.6–0.9 Ga ages, and fewer 2.8–2.6 Ga and 0.47–0.36 Ga ages.

Downloads

Download data is not yet available.

References

Alsen, P., Piasecki, S., Nøhr-Hansen, H., Pauly, S., Sheldon, E. & Hovikoski, J. 2023: Stratigraphy of the Upper Jurassic to lowermost Cretaceous in the Rødryggen-1 and Brorson Halvø-1 boreholes, Wollaston Forland, North-East Greenland. GEUS Bulletin 55, 8342 (this volume). https://doi.org/10.34194/geusb.v55.8342

Barham, M., Kirkland, C.L., Hovikoski, J., Alsen, P., Hollis, J. & Tyrrell, S. 2020: Reduce or recycle? Revealing source to sink links through integrated zircon–feldspar provenance fingerprinting. Sedimentology 68, 531–556. https://doi.org/10.1111/sed.12790

Berner, R.A. 1985: Sulphate reduction, organic matter decomposition and pyrite formation. Royal Society of London, Series A 315, 25–38. https://doi.org/10.1098/rsta.1985.0027

Bjerager, M. et al. 2020: Cretaceous lithostratigraphy of North-East Greenland. Bulletin of the Geological Society of Denmark 68, 37–93. https://doi.org/10.37570/bgsd-2020-68-04

Bjørlykke, K. 1998: Clay mineral diagenesis in sedimentary basins – a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Minerals 33, 15–34. https://doi.org/10.1180/claymin.1998.033.1.03

Bjørlykke, K. & Jahren, J. 2015: Sandstones and Sandstone Reservoirs. In: Bjørlykke, K. (ed.): Petroleum Geoscience: From Sedimentary Environments to Rock Physics 119–149. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-34132-8_4

Bojesen-Koefoed, J.A., Alsen, P., Bjerager, M., Hovikoski, J., Ineson, J.R., Johannessen, P.N., Olivarius, M., Piasecki, S. & Vosgerau, H. 2023a: The Rødryggen-1 and Brorson Halvø-1 fully cored boreholes (Upper Jurassic – Lower Cretaceous), Wollaston Forland, North-East Greenland – an introduction. GEUS Bulletin 55, 8350 (this volume). https://doi.org/10.34194/geusb.v55.8350

Bojesen-Koefoed, J.A., Alsen, P., Bjerager, M., Hovikoski, J., Johannessen, P.N., Nøhr-Hansen, H., Petersen, H.I., Piasecki, S. & Vosgerau, H. 2023b: Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland. GEUS Bulletin 55, 8320 (this volume). https://doi.org/10.34194/geusb.v55.8320

Burley, S.D., Mullis, J. & Matter, A. 1989: Timing diagenesis in the Tartan reservoir (UK North Sea): Constraints from combined cathodoluminescence microscopy and fluid inclusion studies. Marine and Petroleum Geology 6, 98–120. https://doi.org/10.1016/0264-8172(89)90014-7

Burns, F.E., Burley, S.D., Gawthorpe, R.L. & Pollard, J.E. 2005: Diagenetic signatures of stratal surfaces in the Upper Jurassic Fulmar Formation, Central North Sea, UKCS. Sedimentology 52, 1155–1185. https://doi.org/10.1111/j.1365-3091.2005.00729.x

Dhuime, B., Bosch, D., Bruguier, O., Caby, R. & Pourtales, S. 2007: Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland) – A LA-ICP-MS and SIMS study. Precambrian Research 155, 24–46. https://doi.org/10.1016/j.precamres.2007.01.002

Dröllner, M., Barham, M., Kirkland, C.L. & Ware, B. 2021: Every zircon deserves a date: Selection bias in detrital geochronology. Geological Magazine 158, 1135–1142. https://doi.org/10.1017/S0016756821000145

Elvevold, S., Thrane, K. & Gilotti, J.A. 2003: Metamorphic history of high-pressure granulites in Payer Land, Greenland Caledonides. Journal of Metamorphic Geology 21, 49–63. https://doi.org/10.1046/j.1525-1314.2003.00419.x

Fonneland, H.C., Lien, T., Martinsen, O.J., Pedersen, R.B. & Košler, J. 2004: Detrital zircon ages: A key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sedimentary Geology 164, 147–159. https://doi.org/10.1016/j.sedgeo.2003.09.005

Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P. & Fall, A. 2014: Natural fractures in shale: A review and new observations. AAPG Bulletin 98, 2165–2216. https://doi.org/10.1306/08121413151

Gawthorpe, R.L. & Leeder, M.R. 2000: Tectono- sedimentary evolution of active extensional basins. Basin Research 12, 195–218. https://doi.org/10.1111/j.1365-2117.2000.00121.x

Gilotti, J.A., Jones, K.A. & Elvevold, S. 2008: Caledonian metamorphic patterns in Greenland. Geological Society of America Memoir 202, 201–225. https://doi.org/10.1130/2008.1202(08)

Green, P.F. & Japsen, P. 2018: Burial and exhumation history of the Jameson Land Basin, East Greenland, estimated from thermochronological data from the Blokelv-1 core. Geological Survey of Denmark and Greenland Bulletin 42, 133–147. https://doi.org/10.34194/geusb.v42.4324

Hendry, J.P., Wilkinson, M., Fallick, A.E. & Haszeldine, R.S. 2000: Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea. Journal of Sedimentary Research 70, 227–239. https://doi.org/10.1306/2DC4090D-0E47-11D7-8643000102C1865D

Henriksen, N. & Higgins, A.K. 2008: Geological research and mapping in the Caledonian orogen of East Greenland, 70°N–82°N. In: Higgins, A.K. et al. (eds): The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia. Geological Society of America Memoirs 202, 1–27.

Henriksen, N., Higgins, A.K., Gilotti, J.A. & Smith, M.P. 2008: Introduction – The Caledonides of Greenland. The Geological Society of America, Memoir 202, v–xv. https://doi.org/10.1130/2008.1202(00)

Henstra, G.A. et al. 2016: Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018

Higgins, A.K. et al. 2004: The foreland-propagating thrust architecture of the East Greenland Caledonides 72°–75°N. Journal of the Geological Society 161, 1009–1026. https://doi.org/10.1144/0016-764903-141

Hillier, S. 2000: Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals 35, 291–302. https://doi.org/10.1180/000985500546666

Hovikoski, J., Uchman, A., Alsen, P. & Ineson, J. 2018: Ichnological and sedimentological characteristics of submarine fan-delta deposits in a half-graben, Lower Cretaceous Palnatokes Bjerg Formation, NE Greenland. Ichnos 26(1), 28–57. https://doi.org/10.1080/10420940.2017.1396981

Hovikoski, J., Ineson, J.R., Olivarius, M., Bojesen-Koefoed, J.A., Piasecki, S. & Alsen, P. 2023a: Upper Jurassic – Lower Cretaceous of eastern Wollaston Forland, North-East Greenland: a distal marine record of an evolving rift. GEUS Bulletin 55, 8349 (this volume). https://doi.org/10.34194/geusb.v55.8349

Hovikoski, J. et al. 2023b: Late Jurassic – Early Cretaceous marine deoxygenation in NE Greenland. Journal of the Geological Society 180, jgs2022–058. https://doi.org/10.1144/jgs2022-058

Jackson, S.E., Pearson, N.J., Griffin, W.L. & Belousova, E.A. 2004: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017

Japsen, P., Green, P.F., Bonow, J.M., Bjerager, M. & Hopper, J.R. 2021: Episodic burial and exhumation in North-East Greenland before and after opening of the North-East Atlantic. GEUS Bulletin 45(2). 5299. https://doi.org/10.34194/geusb.v45.5299

Kalsbeek, F., Nutman, A.P. & Taylor, P.N. 1993: Palaeoproterozoic basement province in the Caledonian fold belt of North-East Greenland. Precambrian Research 63, 163–178. https://doi.org/10.1016/0301-9268(93)90010-Y

Kalsbeek, F., Thrane, K., Nutman, A.P. & Jepsen, H.F. 2000: Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: Evidence for Grenvillian orogenesis? Journal of the Geological Society (London) 157, 1215–1225. https://doi.org/10.1144/jgs.157.6.1215

Kalsbeek, F., Jepsen, H.F. & Nutman, A.P. 2001: From source migmatites to plutons: Tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen. Lithos 57, 1–21. https://doi.org/10.1016/S0024-4937(00)00071-2

Kalsbeek, F., Thrane, K., Higgins, A.K., Jepsen, H.F., Leslie, A.G., Nutman, A.P. & Frei, R. 2008a: Polyorogenic history of the East Greenland Caledonides. Geological Society of America Memoir 202, 55–72.

Kalsbeek, F., Higgins, A.K., Jepsen, H.F., Frei, R. & Nutman, A.P. 2008b: Granites and granites in the East Greenland Caledonides. Geological Society of America Memoir 202, 227–249. https://doi.org/10.1130/2008.1202(09)

Langrock, U., Stein, R., Lipinski, M. & Brumsack, H.-J. 2003: Late Jurassic to Early Cretaceous black shale formation and paleoenvironment in high northern latitudes: Examples from the Norwegian-Greenland Seaway. Paleoceanography 18, 1074. https://doi.org/10.1029/2002PA000867

Larsen, P.-H., Olsen, H. & Clack, J.A. 2008: The Devonian basin in East Greenland – Review of basin evolution and vertebrate assemblages. Geological Society of America Memoir 202, 273–292. https://doi.org/10.1130/2008.1202(11)

Leslie, A.G. & Nutman, A.P. 2003: Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. Geological Magazine 140, 309–333.

McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louer, D. & Scardi, P. 1999: Rietveld refinement guidelines. Journal of Applied Crystallography 32, 36–50. https://doi.org/10.1107/S0021889898009856

McKerrow, W.S., Mac Niocaill, C. & Dewey, J.F. 2000: The Caledonian Orogeny redefined. Journal of the Geological Society (London) 157, 1149–1154. https://doi.org/10.1144/jgs.157.6.1149

Morton, A.C., Whitham, A.G. & Fanning, C.M. 2005: Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology 182, 3–28. https://doi.org/10.1016/j.sedgeo.2005.08.007

Morton, A., Fanning, M. & Milner, P. 2008: Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sedimentary Geology 210, 61–85.

Mutterlose, J. et al. 2003: The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments. Paleoceanography 18, 1010. https://doi.org/10.1029/2001PA000625

Nielsen, O.B., Rasmussen, E.S. & Thyberg, B.I. 2015: Distribution of clay minerals in the northern North Sea Basin during the Paleogene and Neogene: A result of source-area geology and sorting processes. Journal of Sedimentary Research 85, 562–581. https://doi.org/10.2110/jsr.2015.40

Nøhr-Hansen, H., Piasecki, S. & Alsen, P. 2020: A Cretaceous dinoflagellate cyst zonation for NE Greenland. Geological Magazine 157, 1658–1692. https://doi.org/10.1017/S0016756819001043

Olierook, H.K.H., Barham, M., Kirkland, C.L., Hollis, J. & Vass, A. 2020: Zircon fingerprint of the Neoproterozoic North Atlantic: Perspectives from East Greenland. Precambrian Research 342, 105653. https://doi.org/10.1016/j.precamres.2020.105653

Olivarius, M., Weibel, R., Schovsbo, N.H., Olsen, D. & Kjøller, C. 2018a: Diagenesis of Upper Jurassic sandstones of the Blokelv-1 core in the Jameson Land Basin, East Greenland. Geological Survey of Denmark and Greenland Bulletin 42, 65–84. https://doi.org/10.34194/geusb.v42.4310

Olivarius, M., Bjerager, M., Keulen, N., Knudsen, C. & Kokfelt, T.F. 2018b: Provenance of basinal sandstones in the Upper Jurassic Hareelv Formation, Jameson Land Basin, East Greenland. Geological Survey of Denmark and Greenland Bulletin 42, 115–126. https://doi.org/10.34194/geusb.v42.4317

Pearson, M.J. & Small, J.S. 1988: Illite–smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Minerals 23, 109–132. https://doi.org/10.1180/claymin.1988.023.2.01

Piasecki, S., Bojesen-Koefoed, J.A. & Alsen, P. 2020: Geology of the Lower Cretaceous in the Falkebjerg area, Wollaston Forland, northern East Greenland. Bulletin of the Geological Society of Denmark 68, 155–170.

Rateev, M.A., Sadchikova, T.A. & Shabrova, V.P. 2008: Clay minerals in recent sediments of the world ocean and their relation to types of lithogenesis. Lithology and Mineral Resources 43, 125–135. https://doi.org/10.1134/S002449020802003X

Rietveld, H.M. 1969: A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2, 65–71. https://doi.org/10.1107/S0021889869006558

Rogov, M.A., Shchepetova, E.V. & Zakharov, V.A. 2020: Late Jurassic – Earliest Cretaceous prolonged shelf dysoxic–anoxic event and its possible causes. Geological Magazine 157, 1622–1642. https://doi.org/10.1017/S001675682000076X

Sambridge, M. & Lambert, D.D. 1997: Propagating errors in decay equations: Examples from the Re-Os isotopic system. Geochimica et Cosmochimica Acta 61, 3019–3024.

Sláma, J. & Košler, J. 2012: Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry, Geophysics, Geosystems 13, Q05007. https://doi.org/10.1029/2012GC004106

Sláma, J. et al. 2008: Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

Sláma, J., Walderhaug, O., Fonneland, H., Kosler, J. & Pedersen, R.B. 2011: Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sedimentary Geology 238, 254–267. https://doi.org/10.1016/j.sedgeo.2011.04.018

Slater, C. & Cohen, L. 1962: A centrifugal particle size analyser. Journal of Scientific Instrumentation 39, 614–617.

Smith, M.P. & Rasmussen, J.A. 2008: Cambrian–Silurian development of the Laurentian margin of the Iapetus Ocean in Greenland and related areas. Geological Society of America Memoir 202, 137–167. https://doi.org/10.1130/2008.1202(06)

Stacey, J.S. & Kramers, J.D. 1975: Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–221. https://doi.org/10.1016/0012-821X(75)90088-6

Stemmerik, L., Christensen, F.G., Piasecki, S., Jordt, B., Marcussen, C. & Nøhr-Hansen, H. 1992: Depositional history and petroleum geology of the Carboniferous to Cretaceous sediments in the northern part of East Greenland. Norwegian Petroleum Federation, Special Publication 2, 67–87. https://doi.org/10.1016/B978-0-444-88943-0.50009-5

Stemmerik, L., Clausen, O.R., Korstgård, J., Larsen, M., Piasecki, S., Seidler, L., Surlyk, F. & Therkelsen, J. 1997: Petroleum geological investigations in East Greenland: Project ‘Resources of the sedimentary basins of North and East Greenland’. Geological Survey of Greenland Bulletin 176, 29–38. https://doi.org/10.34194/ggub.v176.5058

Stoker, M.S. et al. 2017: An overview of the Upper Palaeozoic–Mesozoic stratigraphy of the NE Atlantic region. Geological Society, London, Special Publications 447, 11–68. https://doi.org/10.1144/SP447.2

Strachan, R.A., Nutman, A.P. & Friderichsen, J.D. 1995: SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society 152, 779–784.

Surlyk, F. 1978: Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic–Cretaceous boundary, East Greenland). Geological Survey of Greenland Bulletin 128, 108 pp. https://doi.org/10.34194/bullggu.v128.6670

Surlyk, F. 1984: Fan-delta to submarine fan conglomerates of the Volgian-Valanginian Wollaston Forland Group, East Greenland. Canadian Society of Petroleum Geologists Memoir 10, 359–382.

Surlyk, F. 1990: A Jurassic sea-level curve for East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 78, 71–85. https://doi.org/10.1016/0031-0182(90)90205-L

Surlyk, F. 2003: The Jurassic of East Greenland: A sedimentary record of thermal subsidence, onset and culmination of rifting. Geological Survey of Denmark and Greenland Bulletin 1, 659–722. https://doi.org/10.34194/geusb.v1.4674

Surlyk, F. & Korstgård, J. 2013: Crestal unconformities on an exposed Jurassic tilted fault block, Wollaston Forland, East Greenland as an analogue for buried hydrocarbon traps. Marine and Petroleum Geology 44, 82–95. https://doi.org/10.1016/j.marpetgeo.2013.03.009

Surlyk, F. et al. 2021: Jurassic stratigraphy of East Greenland. GEUS Bulletin 46, 6521. https://doi.org/10.34194/geusb.v46.6521

Thrane, K. 2002: Relationships between Archaean and Palaeoproterozoic crystalline basement complexes in the southern part of the East Greenland Caledonides: An ion microprobe study. Precambrian Research 113, 19–42. https://doi.org/10.1016/S0301-9268(01)00198-X

Thyberg, B., Jahren, J., Winje, T., Bjørlykke, K. & Faleide, J.I. 2009: From mud to shale: Rock stiffening by micro-quartz cementation. First Break 27, 27–33. https://doi.org/10.3997/1365-2397.2009003

Tribovillard, N., Algeo, T.J., Lyons, T. & Riboulleau, A. 2006: Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012

Vermeesch, P. 2012: On the visualisation of detrital age distributions. Chemical Geology 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021

Vermeesch, P., Resentini, A. & Garzanti, E. 2016: An R package for statistical provenance analysis. Sedimentary Geology 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009

Watt, G.R., Kinny, P.D. & Friderichsen, J.D. 2000: U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society 157, 1031–1048. https://doi.org/10.1144/jgs.157.5.1031

Weibel, R., Friis, H., Kazerouni, A.M., Svendsen, J.B., Stokkendal, J. & Poulsen, M.L.K. 2010: Development of early diagenetic silica and quartz morphologies. Sedimentary Geology 228, 151–170. https://doi.org/10.1016/j.sedgeo.2010.04.008

microscope image showing rock structure

Published

21-12-2023

How to Cite

Olivarius, M., Kazerouni, A. M., Weibel, R., Kokfelt, T. F., & Hovikoski, J. (2023). Mudstone diagenesis and sandstone provenance in an Upper Jurassic – Lower Cretaceous evolving half-graben system, Wollaston Forland, North-East Greenland. GEUS Bulletin, 55. https://doi.org/10.34194/geusb.v55.8309