Mudstone diagenesis and sandstone provenance in an Upper Jurassic – Lower Cretaceous evolving half-graben system, Wollaston Forland, North-East Greenland
DOI:
https://doi.org/10.34194/geusb.v55.8309Keywords:
diagenetic processes, mudstone mineralogy, petrography, provenance analysis, riftingAbstract
The influence of rifting on the composition of Kimmeridgian to Barremian mudstones from northern Wollaston Forland, North-East Greenland is investigated by petrographic and mineralogical analyses of the Brorson Halvø-1 and Rødryggen-1 cores, and provenance of analysis by zircon U-Pb age dating of nearby sandstones. Mudstone composition varies systematically as a function of the timing of rifting progression and position in the half-graben depositional system. Pyrite primarily precipitated in the early rift to rift climax phases. Euhedral pyrite overgrowths on framboids formed only during the rift climax phase (Lindemans Bugt Formation). Dolomite is the dominant carbonate cement, except for the sediments deposited in the early waning rift phase (Palnatokes Bjerg Formation) where calcite is dominant, and in the late waning rift phase (Stratumbjerg Formation) where siderite dominates. The highest-temperature reactions with precipitation of illite, quartz, ankerite and barite signify sediment burial depths of >2 km prior to exhumation. Uplift-induced fracturing occurred mainly in the early rift to rift acceleration succession (Bernbjerg Formation). Mudstones in the proximal part of the half-graben (Rødryggen-1) include more detrital kaolinite than the distal mudstones (Brorson Halvø-1), which contain more mixed-layer illite-smectite and illite. Vermiculite was deposited only in the proximal part of the basin in the rift climax and waning rift successions. Chlorite was deposited proximally and distally during the waning rift phase, though supply began earlier in the distal part. Fine-grained sediment in the distal part of the half-graben was therefore probably supplied by axial transport from Palaeoproterozoic crystalline rocks and Meso- to Neoproterozoic metamorphic rocks located to the north and north-west. This agrees with the zircon provenance signature from outcropping sand-rich facies, where zircon grains with U-Pb ages of 2.0–1.6 Ga are dominant, in addition to common 1.6–0.9 Ga ages, and fewer 2.8–2.6 Ga and 0.47–0.36 Ga ages.
Downloads
References
Alsen, P., Piasecki, S., Nøhr-Hansen, H., Pauly, S., Sheldon, E. & Hovikoski, J. 2023: Stratigraphy of the Upper Jurassic to lowermost Cretaceous in the Rødryggen-1 and Brorson Halvø-1 boreholes, Wollaston Forland, North-East Greenland. GEUS Bulletin 55, 8342 (this volume). https://doi.org/10.34194/geusb.v55.8342
Barham, M., Kirkland, C.L., Hovikoski, J., Alsen, P., Hollis, J. & Tyrrell, S. 2020: Reduce or recycle? Revealing source to sink links through integrated zircon–feldspar provenance fingerprinting. Sedimentology 68, 531–556. https://doi.org/10.1111/sed.12790
Berner, R.A. 1985: Sulphate reduction, organic matter decomposition and pyrite formation. Royal Society of London, Series A 315, 25–38. https://doi.org/10.1098/rsta.1985.0027
Bjerager, M. et al. 2020: Cretaceous lithostratigraphy of North-East Greenland. Bulletin of the Geological Society of Denmark 68, 37–93. https://doi.org/10.37570/bgsd-2020-68-04
Bjørlykke, K. 1998: Clay mineral diagenesis in sedimentary basins – a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Minerals 33, 15–34. https://doi.org/10.1180/claymin.1998.033.1.03
Bjørlykke, K. & Jahren, J. 2015: Sandstones and Sandstone Reservoirs. In: Bjørlykke, K. (ed.): Petroleum Geoscience: From Sedimentary Environments to Rock Physics 119–149. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-34132-8_4
Bojesen-Koefoed, J.A., Alsen, P., Bjerager, M., Hovikoski, J., Ineson, J.R., Johannessen, P.N., Olivarius, M., Piasecki, S. & Vosgerau, H. 2023a: The Rødryggen-1 and Brorson Halvø-1 fully cored boreholes (Upper Jurassic – Lower Cretaceous), Wollaston Forland, North-East Greenland – an introduction. GEUS Bulletin 55, 8350 (this volume). https://doi.org/10.34194/geusb.v55.8350
Bojesen-Koefoed, J.A., Alsen, P., Bjerager, M., Hovikoski, J., Johannessen, P.N., Nøhr-Hansen, H., Petersen, H.I., Piasecki, S. & Vosgerau, H. 2023b: Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland. GEUS Bulletin 55, 8320 (this volume). https://doi.org/10.34194/geusb.v55.8320
Burley, S.D., Mullis, J. & Matter, A. 1989: Timing diagenesis in the Tartan reservoir (UK North Sea): Constraints from combined cathodoluminescence microscopy and fluid inclusion studies. Marine and Petroleum Geology 6, 98–120. https://doi.org/10.1016/0264-8172(89)90014-7
Burns, F.E., Burley, S.D., Gawthorpe, R.L. & Pollard, J.E. 2005: Diagenetic signatures of stratal surfaces in the Upper Jurassic Fulmar Formation, Central North Sea, UKCS. Sedimentology 52, 1155–1185. https://doi.org/10.1111/j.1365-3091.2005.00729.x
Dhuime, B., Bosch, D., Bruguier, O., Caby, R. & Pourtales, S. 2007: Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland) – A LA-ICP-MS and SIMS study. Precambrian Research 155, 24–46. https://doi.org/10.1016/j.precamres.2007.01.002
Dröllner, M., Barham, M., Kirkland, C.L. & Ware, B. 2021: Every zircon deserves a date: Selection bias in detrital geochronology. Geological Magazine 158, 1135–1142. https://doi.org/10.1017/S0016756821000145
Elvevold, S., Thrane, K. & Gilotti, J.A. 2003: Metamorphic history of high-pressure granulites in Payer Land, Greenland Caledonides. Journal of Metamorphic Geology 21, 49–63. https://doi.org/10.1046/j.1525-1314.2003.00419.x
Fonneland, H.C., Lien, T., Martinsen, O.J., Pedersen, R.B. & Košler, J. 2004: Detrital zircon ages: A key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sedimentary Geology 164, 147–159. https://doi.org/10.1016/j.sedgeo.2003.09.005
Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P. & Fall, A. 2014: Natural fractures in shale: A review and new observations. AAPG Bulletin 98, 2165–2216. https://doi.org/10.1306/08121413151
Gawthorpe, R.L. & Leeder, M.R. 2000: Tectono- sedimentary evolution of active extensional basins. Basin Research 12, 195–218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
Gilotti, J.A., Jones, K.A. & Elvevold, S. 2008: Caledonian metamorphic patterns in Greenland. Geological Society of America Memoir 202, 201–225. https://doi.org/10.1130/2008.1202(08)
Green, P.F. & Japsen, P. 2018: Burial and exhumation history of the Jameson Land Basin, East Greenland, estimated from thermochronological data from the Blokelv-1 core. Geological Survey of Denmark and Greenland Bulletin 42, 133–147. https://doi.org/10.34194/geusb.v42.4324
Hendry, J.P., Wilkinson, M., Fallick, A.E. & Haszeldine, R.S. 2000: Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea. Journal of Sedimentary Research 70, 227–239. https://doi.org/10.1306/2DC4090D-0E47-11D7-8643000102C1865D
Henriksen, N. & Higgins, A.K. 2008: Geological research and mapping in the Caledonian orogen of East Greenland, 70°N–82°N. In: Higgins, A.K. et al. (eds): The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia. Geological Society of America Memoirs 202, 1–27.
Henriksen, N., Higgins, A.K., Gilotti, J.A. & Smith, M.P. 2008: Introduction – The Caledonides of Greenland. The Geological Society of America, Memoir 202, v–xv. https://doi.org/10.1130/2008.1202(00)
Henstra, G.A. et al. 2016: Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
Higgins, A.K. et al. 2004: The foreland-propagating thrust architecture of the East Greenland Caledonides 72°–75°N. Journal of the Geological Society 161, 1009–1026. https://doi.org/10.1144/0016-764903-141
Hillier, S. 2000: Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals 35, 291–302. https://doi.org/10.1180/000985500546666
Hovikoski, J., Uchman, A., Alsen, P. & Ineson, J. 2018: Ichnological and sedimentological characteristics of submarine fan-delta deposits in a half-graben, Lower Cretaceous Palnatokes Bjerg Formation, NE Greenland. Ichnos 26(1), 28–57. https://doi.org/10.1080/10420940.2017.1396981
Hovikoski, J., Ineson, J.R., Olivarius, M., Bojesen-Koefoed, J.A., Piasecki, S. & Alsen, P. 2023a: Upper Jurassic – Lower Cretaceous of eastern Wollaston Forland, North-East Greenland: a distal marine record of an evolving rift. GEUS Bulletin 55, 8349 (this volume). https://doi.org/10.34194/geusb.v55.8349
Hovikoski, J. et al. 2023b: Late Jurassic – Early Cretaceous marine deoxygenation in NE Greenland. Journal of the Geological Society 180, jgs2022–058. https://doi.org/10.1144/jgs2022-058
Jackson, S.E., Pearson, N.J., Griffin, W.L. & Belousova, E.A. 2004: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
Japsen, P., Green, P.F., Bonow, J.M., Bjerager, M. & Hopper, J.R. 2021: Episodic burial and exhumation in North-East Greenland before and after opening of the North-East Atlantic. GEUS Bulletin 45(2). 5299. https://doi.org/10.34194/geusb.v45.5299
Kalsbeek, F., Nutman, A.P. & Taylor, P.N. 1993: Palaeoproterozoic basement province in the Caledonian fold belt of North-East Greenland. Precambrian Research 63, 163–178. https://doi.org/10.1016/0301-9268(93)90010-Y
Kalsbeek, F., Thrane, K., Nutman, A.P. & Jepsen, H.F. 2000: Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: Evidence for Grenvillian orogenesis? Journal of the Geological Society (London) 157, 1215–1225. https://doi.org/10.1144/jgs.157.6.1215
Kalsbeek, F., Jepsen, H.F. & Nutman, A.P. 2001: From source migmatites to plutons: Tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen. Lithos 57, 1–21. https://doi.org/10.1016/S0024-4937(00)00071-2
Kalsbeek, F., Thrane, K., Higgins, A.K., Jepsen, H.F., Leslie, A.G., Nutman, A.P. & Frei, R. 2008a: Polyorogenic history of the East Greenland Caledonides. Geological Society of America Memoir 202, 55–72.
Kalsbeek, F., Higgins, A.K., Jepsen, H.F., Frei, R. & Nutman, A.P. 2008b: Granites and granites in the East Greenland Caledonides. Geological Society of America Memoir 202, 227–249. https://doi.org/10.1130/2008.1202(09)
Langrock, U., Stein, R., Lipinski, M. & Brumsack, H.-J. 2003: Late Jurassic to Early Cretaceous black shale formation and paleoenvironment in high northern latitudes: Examples from the Norwegian-Greenland Seaway. Paleoceanography 18, 1074. https://doi.org/10.1029/2002PA000867
Larsen, P.-H., Olsen, H. & Clack, J.A. 2008: The Devonian basin in East Greenland – Review of basin evolution and vertebrate assemblages. Geological Society of America Memoir 202, 273–292. https://doi.org/10.1130/2008.1202(11)
Leslie, A.G. & Nutman, A.P. 2003: Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. Geological Magazine 140, 309–333.
McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louer, D. & Scardi, P. 1999: Rietveld refinement guidelines. Journal of Applied Crystallography 32, 36–50. https://doi.org/10.1107/S0021889898009856
McKerrow, W.S., Mac Niocaill, C. & Dewey, J.F. 2000: The Caledonian Orogeny redefined. Journal of the Geological Society (London) 157, 1149–1154. https://doi.org/10.1144/jgs.157.6.1149
Morton, A.C., Whitham, A.G. & Fanning, C.M. 2005: Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology 182, 3–28. https://doi.org/10.1016/j.sedgeo.2005.08.007
Morton, A., Fanning, M. & Milner, P. 2008: Provenance characteristics of Scandinavian basement terrains: Constraints from detrital zircon ages in modern river sediments. Sedimentary Geology 210, 61–85.
Mutterlose, J. et al. 2003: The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments. Paleoceanography 18, 1010. https://doi.org/10.1029/2001PA000625
Nielsen, O.B., Rasmussen, E.S. & Thyberg, B.I. 2015: Distribution of clay minerals in the northern North Sea Basin during the Paleogene and Neogene: A result of source-area geology and sorting processes. Journal of Sedimentary Research 85, 562–581. https://doi.org/10.2110/jsr.2015.40
Nøhr-Hansen, H., Piasecki, S. & Alsen, P. 2020: A Cretaceous dinoflagellate cyst zonation for NE Greenland. Geological Magazine 157, 1658–1692. https://doi.org/10.1017/S0016756819001043
Olierook, H.K.H., Barham, M., Kirkland, C.L., Hollis, J. & Vass, A. 2020: Zircon fingerprint of the Neoproterozoic North Atlantic: Perspectives from East Greenland. Precambrian Research 342, 105653. https://doi.org/10.1016/j.precamres.2020.105653
Olivarius, M., Weibel, R., Schovsbo, N.H., Olsen, D. & Kjøller, C. 2018a: Diagenesis of Upper Jurassic sandstones of the Blokelv-1 core in the Jameson Land Basin, East Greenland. Geological Survey of Denmark and Greenland Bulletin 42, 65–84. https://doi.org/10.34194/geusb.v42.4310
Olivarius, M., Bjerager, M., Keulen, N., Knudsen, C. & Kokfelt, T.F. 2018b: Provenance of basinal sandstones in the Upper Jurassic Hareelv Formation, Jameson Land Basin, East Greenland. Geological Survey of Denmark and Greenland Bulletin 42, 115–126. https://doi.org/10.34194/geusb.v42.4317
Pearson, M.J. & Small, J.S. 1988: Illite–smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Minerals 23, 109–132. https://doi.org/10.1180/claymin.1988.023.2.01
Piasecki, S., Bojesen-Koefoed, J.A. & Alsen, P. 2020: Geology of the Lower Cretaceous in the Falkebjerg area, Wollaston Forland, northern East Greenland. Bulletin of the Geological Society of Denmark 68, 155–170.
Rateev, M.A., Sadchikova, T.A. & Shabrova, V.P. 2008: Clay minerals in recent sediments of the world ocean and their relation to types of lithogenesis. Lithology and Mineral Resources 43, 125–135. https://doi.org/10.1134/S002449020802003X
Rietveld, H.M. 1969: A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2, 65–71. https://doi.org/10.1107/S0021889869006558
Rogov, M.A., Shchepetova, E.V. & Zakharov, V.A. 2020: Late Jurassic – Earliest Cretaceous prolonged shelf dysoxic–anoxic event and its possible causes. Geological Magazine 157, 1622–1642. https://doi.org/10.1017/S001675682000076X
Sambridge, M. & Lambert, D.D. 1997: Propagating errors in decay equations: Examples from the Re-Os isotopic system. Geochimica et Cosmochimica Acta 61, 3019–3024.
Sláma, J. & Košler, J. 2012: Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry, Geophysics, Geosystems 13, Q05007. https://doi.org/10.1029/2012GC004106
Sláma, J. et al. 2008: Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
Sláma, J., Walderhaug, O., Fonneland, H., Kosler, J. & Pedersen, R.B. 2011: Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sedimentary Geology 238, 254–267. https://doi.org/10.1016/j.sedgeo.2011.04.018
Slater, C. & Cohen, L. 1962: A centrifugal particle size analyser. Journal of Scientific Instrumentation 39, 614–617.
Smith, M.P. & Rasmussen, J.A. 2008: Cambrian–Silurian development of the Laurentian margin of the Iapetus Ocean in Greenland and related areas. Geological Society of America Memoir 202, 137–167. https://doi.org/10.1130/2008.1202(06)
Stacey, J.S. & Kramers, J.D. 1975: Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
Stemmerik, L., Christensen, F.G., Piasecki, S., Jordt, B., Marcussen, C. & Nøhr-Hansen, H. 1992: Depositional history and petroleum geology of the Carboniferous to Cretaceous sediments in the northern part of East Greenland. Norwegian Petroleum Federation, Special Publication 2, 67–87. https://doi.org/10.1016/B978-0-444-88943-0.50009-5
Stemmerik, L., Clausen, O.R., Korstgård, J., Larsen, M., Piasecki, S., Seidler, L., Surlyk, F. & Therkelsen, J. 1997: Petroleum geological investigations in East Greenland: Project ‘Resources of the sedimentary basins of North and East Greenland’. Geological Survey of Greenland Bulletin 176, 29–38. https://doi.org/10.34194/ggub.v176.5058
Stoker, M.S. et al. 2017: An overview of the Upper Palaeozoic–Mesozoic stratigraphy of the NE Atlantic region. Geological Society, London, Special Publications 447, 11–68. https://doi.org/10.1144/SP447.2
Strachan, R.A., Nutman, A.P. & Friderichsen, J.D. 1995: SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society 152, 779–784.
Surlyk, F. 1978: Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic–Cretaceous boundary, East Greenland). Geological Survey of Greenland Bulletin 128, 108 pp. https://doi.org/10.34194/bullggu.v128.6670
Surlyk, F. 1984: Fan-delta to submarine fan conglomerates of the Volgian-Valanginian Wollaston Forland Group, East Greenland. Canadian Society of Petroleum Geologists Memoir 10, 359–382.
Surlyk, F. 1990: A Jurassic sea-level curve for East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 78, 71–85. https://doi.org/10.1016/0031-0182(90)90205-L
Surlyk, F. 2003: The Jurassic of East Greenland: A sedimentary record of thermal subsidence, onset and culmination of rifting. Geological Survey of Denmark and Greenland Bulletin 1, 659–722. https://doi.org/10.34194/geusb.v1.4674
Surlyk, F. & Korstgård, J. 2013: Crestal unconformities on an exposed Jurassic tilted fault block, Wollaston Forland, East Greenland as an analogue for buried hydrocarbon traps. Marine and Petroleum Geology 44, 82–95. https://doi.org/10.1016/j.marpetgeo.2013.03.009
Surlyk, F. et al. 2021: Jurassic stratigraphy of East Greenland. GEUS Bulletin 46, 6521. https://doi.org/10.34194/geusb.v46.6521
Thrane, K. 2002: Relationships between Archaean and Palaeoproterozoic crystalline basement complexes in the southern part of the East Greenland Caledonides: An ion microprobe study. Precambrian Research 113, 19–42. https://doi.org/10.1016/S0301-9268(01)00198-X
Thyberg, B., Jahren, J., Winje, T., Bjørlykke, K. & Faleide, J.I. 2009: From mud to shale: Rock stiffening by micro-quartz cementation. First Break 27, 27–33. https://doi.org/10.3997/1365-2397.2009003
Tribovillard, N., Algeo, T.J., Lyons, T. & Riboulleau, A. 2006: Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
Vermeesch, P. 2012: On the visualisation of detrital age distributions. Chemical Geology 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
Vermeesch, P., Resentini, A. & Garzanti, E. 2016: An R package for statistical provenance analysis. Sedimentary Geology 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
Watt, G.R., Kinny, P.D. & Friderichsen, J.D. 2000: U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society 157, 1031–1048. https://doi.org/10.1144/jgs.157.5.1031
Weibel, R., Friis, H., Kazerouni, A.M., Svendsen, J.B., Stokkendal, J. & Poulsen, M.L.K. 2010: Development of early diagenetic silica and quartz morphologies. Sedimentary Geology 228, 151–170. https://doi.org/10.1016/j.sedgeo.2010.04.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mette Olivarius, Afsoon M Kazerouni, Rikke Weibel, Thomas F Kokfelt, Jussi Hovikoski
This work is licensed under a Creative Commons Attribution 4.0 International License.
GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.