Thermo-tectonic development of the Wandel Sea Basin, North Greenland

Authors

DOI:

https://doi.org/10.34194/geusb.v45.5298

Keywords:

Wandel Sea Basin, Eurekan Orogeny, exhumation, North Greenland, Svalbard, Sverdrup Basin, thermochronology, uplift

Abstract

The Carboniferous–Palaeogene Wandel Sea Basin of eastern North Greenland (north of 80°N, east of 40°W) is an important piece in the puzzle of Arctic geology. It is particularly important for understanding how the Paleocene–Eocene convergence between Greenland, the Canadian Arctic and Svalbard relates to the compressional tectonics in the High Arctic, collectively known as the Eurekan Orogeny. In this study, we present apatite fission-track analysis (AFTA) data and review published vitrinite reflectance data combined with observations from the stratigraphic record to place firmer constraints on the timing of key tectonic events. This research study reveals a long history of episodic burial and exhumation since the collapse of the Palaeozoic fold belts in Greenland. Our results define pre-Cenozoic exhumation episodes in early Permian, Late Triassic, Late Jurassic and mid-Cretaceous times, each involving the removal of kilometre-scale sedimentary covers. Mid-Paleocene exhumation defines the timing of compression along the major fault zones during the first stage of the Eurekan Orogeny, after the onset of sea-floor spreading west of Greenland. Regional exhumation that began at the end of the Eocene led to the removal of most of a kilometre-thick cover that had accumulated during Eocene subsidence and involved a major reverse movement along the Harder Fjord Fault Zone, northern Peary Land. These events took place after the end of sea-floor spreading west of Greenland, and thus, represent post-Eurekan tectonics. Mid–late Miocene exhumation is most likely a consequence of uplift and incision across most of the Wandel Sea Basin study area. The preserved sedimentary sequences of the Wandel Sea Basin represent remnants of thicker strata that likely extended substantially beyond the present-day outline of the basin. We find that the present-day outline of the basin with scattered sedimentary outliers is primarily the result of fault inversion during Eurekan compression followed by deposition and removal of a kilometre-thick overburden.

Downloads

Download data is not yet available.

References

Alsen, P. McRoberts, C., Svennevig, K., Bojesen-Koefoed, J., Hovikoski, J. & Piasecki, S. 2017: The Isrand Formation: a Middle Triassic Daonella-bearing, black shale unit in Kilen, North Greenland (with a note on the Triassic in Amdrup Land). Newsletters on Stratigraphy 50, 31–46. https://doi.org/10.1127/nos/2016/0341

Armstrong, H., Smith, M., Aldridge, R. & Tull, S. 1994: Thermal maturation of the Lower Palaeozoic strata of northern Greenland from conodont colour alteration index (CAI) data: implications for burial history and hydrocarbon exploration. Geological Magazine 131, 219–230. https://doi.org/10.1017/S0016756800010748

Arne, D., Grist, A., Zentilli, M., Collins, M., Embry, A. & Gentzis, T. 2002: Cooling of the Sverdrup Basin during Tertiary basin inversion: implications for hydrocarbon exploration. Basin Research 14, 183–205. https://doi.org/10.1046/j.1365-2117.2002.00163.x

Bjerager, M., Alsen, P., Hovikoski, J., Lindström, S., Stemmerik, L. & Therkelsen, J. 2019: Triassic lithostratigraphy of the Wandel Sea Basin, North Greenland. Bulletin of the Geological Society of Denmark 67, 83–105. https://doi.org/10.37570/bgsd-2019-67-06

Bonow, J.M. & Japsen, P. 2021: Peneplains and tectonics in North-East Greenland after opening of the North-East Atlantic. GEUS Bulletin 45(1), 5297. https://doi.org/10.34194/geusb.v45.5297

Boyd, A. 1990: The Thyra Ø flora: toward an understanding of the climate and vegetation during the early tertiary in the high arctic. Review of Palaeobotany and Palynology 62, 189–203. https://doi.org/10.1016/0034-6667(90)90089-2

Boyd, A., Håkansson, E. & Stemmerik, L. 1994: Preliminary age considerations and descriptions of the Early Tertiary Thyra Ø flora from eastern North Greenland. In: Håkansson, E. (ed): Wandel Sea Basin: Basin Analysis 15. Geological Institute, University of Copenhagen.

Brozena, J., Childers, V., Lawver, L., Gahagan, L., Forsberg, R., Faleide, J. & Eldholm, O. 2003: New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: implications for basin development. Geology 31, 825–828. https://doi.org/10.1130/G19528.1

Burnham, A.K. & Sweeney, J.J. 1989: A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta 53, 2649–2657. https://doi.org/10.1016/0016-7037(89)90136-1

Chalmers, J.A. & Pulvertaft, T.C.R. 2001: Development of the continental margins of the Labrador Sea: a review. In: Wilson, R.C.L., Withmarsh, R.B., Taylor, B. & Froitzheim, N. (eds): Non-volcanic rifting of continental margins: a comparison of evidence from land and sea. Geological Society London, Special Publications 187, 77–105. https://doi.org/10.1144/gsl.sp.2001.187.01.05

Croxton, C.A., Dawes, P.R., Soper, N.J. & Thomsen, E. 1980: An occurrence of Tertiary shales from the Harder Fjord Fault, North Greenland fold belt, Peary Land. Rapport Grønlands Geologiske Undersøgelse 101, 61–64.

Dallmann, W. 2015: Geoscience Atlas of Svalbard: Norsk Polarinstitutt. 292 pp.

Dallmann, W.K., Andresen, A., Bergh, S.G., Maher jr., H.D. & Ohta, Y. 1993: Tertiary fold-and-thrust belt of Spitsbergen, Svalbard. Norsk Polarinstitutt Meddelelser 128, 48 pp., 3 maps.

Dam, G., Larsen, M. & Sørensen, J.C. 1998: Sedimentary response to mantle plumes: implications from Paleocene onshore successions, West and East Greenland. Geology 26, 207–210. https://doi.org/10.1130/0091-7613(1998)026%3C0207:SRTMPI%3E2.3.CO;2

Dawes, P.R. 1976: Precambrian to Tertiary of northern Greenland. In: Escher, A. & Watt, W.S. (eds): Geology of Greenland, 248–303. Copenhagen: The Geological Survey of Greenland.

Dawes, P.R. & Soper, N. 1973: Pre-quaternary history of North Greenland: Regional Arctic geology of the Nordic countries. In: Pitcher, M.G. (ed): Arctic Geology: AAPG Memoir 19, 117–134.

De Paor, D.G., Bradley, D.C., Eisenstadt, G. & Phillips, S.M. 1989: The Arctic Eurekan orogen: A most unusual fold-and-thrust belt. Geological Society of America Bulletin 101, 952–967. https://doi.org/10.1130/0016-7606(1989)101<0952:taeoam>2.3.co;2

Døssing, A., Jackson, H.R., Matzka, J., Einarsson, I., Rasmussen, T.M., Olesen, A.V. & Brozena, J. 2013: On the origin of the Amerasia Basin and the High Arctic Large Igneous Province—results of new aeromagnetic data. Earth and Planetary Science Letters 363, 219–230. https://doi.org/10.1016/j.epsl.2012.12.013

Døssing, A., Stemmerik, L., Dahl-Jensen, T. & Schlindwein, V. 2010: Segmentation of the eastern North Greenland oblique-shear margin – regional plate tectonic implications. Earth and Planetary Science Letters 292, 239–253. https://doi.org/10.1016/j.epsl.2009.12.036

Dypvik, H., Håkansson, E. & Heinberg, C. 2002: Jurassic and Cretaceous palaeogeography and stratigraphic comparisons in the North Greenland-Svalbard region. Polar Research 21, 91–108. https://doi.org/10.1111/j.1751-8369.2002.tb00069.x

Embry, A. & Beauchamp, B. 2019: Sverdrup Basin. In: Miall, A.D. (ed): The Sedimentary Basins of the United States and Canada, p. 559–592. Calgary, AB: Elsevier. https://doi.org/10.1016/B978-0-444-63895-3.00014-0

Escher, J.C. & Pulvertaft, T.C.R. 1995: Geological map of Greenland, 1:2 500 000. Copenhagen: Geological Survey of Denmark.

Faleide, J.I., Tsikalas, F., Breivik, A.J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J. & Eldholm, O. 2008: Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31, 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012

Gaina, C., Gernigon, L. & Ball, P. 2009: Paleocene-recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. Journal of the Geological Society of London 166, 601–616. https://doi.org/10.1144/0016-76492008-112

Gaina, C., Nasuti, A., Kimbell, G.S. & Blischke, A. 2017: Break-up and seafloor spreading domains in the NE Atlantic. In: Péron-Pinvidic, G.et al. (eds): The NE Atlantic region: a reappraisal of crustal structure, tectonostratigraphy and magmatic evolution. Geological Society, London, Special Publications 447, 12 pp. https://doi.org/10.1144/SP447.12

Galbraith, R.F. 2005: Statistics for fission track analysis, 192 pp. Boca Raton, FL: Chapman & Hall/CRC Interdisciplinary Statistics Series.

Gallagher, K., Hawkesworth, C.J. & Mantovani, M.S.M. 1995: Denudation, fission track analysis and the long-term evolution of passive margin topography: application to the southeast Brazilian margin. Journal of South American Earth Sciences 8, 65–77. https://doi.org/10.1016/0895-9811(94)00042-z

Gautier, D.L.et al. 2011: Assessment of NE Greenland: prototype for development of Circum-Arctic resource appraisal methodology. In: Spencer, A.M.et al. (eds): Arctic petroleum geology. Geological Society, London, Memoirs 35, 663–672. https://doi.org/10.1144/m35.43

Gion, A.M., Williams, S.E. & Mueller, R.D. 2017: A reconstruction of the Eurekan Orogeny incorporating deformation constraints. Tectonics 36, 304–320. https://doi.org/10.1002/2015tc004094

GLOBE Task Teamet al. 1999: The global land one-kilometer base elevation (GLOBE) digital elevation model, version 1.0. National Oceanic and Atmospheric Administration. http://www.ngdc.noaa.gov/mgg/topo/globe.html (Accessed: April 2012)

Gradstein, F.M., Ogg, J.G. & Hilgen, F.J. 2012: On the geologic time scale. Newsletters on Stratigraphy 45, 171–188. https://doi.org/10.1127/0078-0421/2012/0020

Green, P.F. 1986. On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. Geological Magazine 123, 493–506. https://doi.org/10.1017/s0016756800035081

Green, P.F. 2014: Thermal history of outcrop samples from central and eastern North Greenland based on AFTA and VR. Geotrack Report GC1113, 217 pp. Victoria: Geotrack International. Available in Supplementary File S2.

Green, P.F. & Duddy, I.R. 2010: Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope. In: Vining, B.A. & Pickering, S.C. (eds): Petroleum geology: from mature basins to new frontiers. Geological Society, London, Petroleum Geology Conference Series 7, 633–644. https://doi.org/10.1144/0070633

Green, P.F. & Duddy, I.R. 2012: Thermal history reconstruction in sedimentary basins using apatite fission-track analysis and related techniques. In: Analyzing the thermal history of sedimentary basins: methods and case studies. The Society of Economic Paleontologists and Mineralogists (SEPM). Special Publication 103, 65–104. https://doi.org/10.2110/sepmsp.103.065

Green, P.F., Lidmar-Bergström, K., Japsen, P., Bonow, J.M. & Chalmers, J.A. 2013: Stratigraphic landscape analysis, thermochronology and the episodic development of elevated passive continental margins. Geological Survey of Denmark and Greenland Bulletin 30, 150 pp. https://doi.org/10.34194/geusb.v30.4673

Green, P.F., Japsen, P., Guarnieri, P. & Nielsen, T.F.D. 2014: Thermal history of outcrop samples from South-East Greenland based on apatite fission-track analysis. In: Stensgaard, B.M. (ed): South-East Greenland Mineral Endowment Task (SEGMENT), South-East Greenland Workshop, Copenhagen, 27–28 March 2014. Abstract Volume 21–25.

Green, P.F., Duddy, I.R., Japsen, P., Bonow, J.M. & Malan, J. 2017: Post-breakup burial and exhumation of the southern margin of Africa. Basin Research, 1–32. https://doi.org/10.1111/bre.12167

Green, P.F., Japsen, P., Chalmers, J.A., Bonow, J.M. & Duddy, I.R. 2018: Post-breakup burial and exhumation of passive continental margins: seven propositions to inform geodynamic models. Gondwana Research 53, 58–81. https://doi.org/10.1016/j.gr.2017.03.007

Guarnieri, P. 2015: Pre-break-up palaeostress state along the East Greenland margin. Journal of the Geological Society, London 172, 727–739. https://doi.org/10.1144/jgs2015-053

Håkansson, E. & Pedersen, S.A.S. 1982: Late Paleozoic to Tertiary tectonic evolution of the continental margin in North Greenland. Proceedings of the Third International Symposium on Arctic Geology, Canadian Society of Petroleum Geologists, Memoir 8, 331–348.

Håkansson, E. & Pedersen, S.A.S. 2001: The Wandel Hav Strike-Slip Mobile Belt – a Mesozoic plate boundary in North Greenland. Bulletin of the Geological Society of Denmark 48, 149–158.

Håkansson, E. & Pedersen, S.A.S. 2015: A healed strike-slip plate boundary in North Greenland indicated through associated pull-apart basins. Geological Society, London, Special Publications 413, 143–169. https://doi.org/10.1144/sp413.10

Håkansson, E. & Stemmerik, L. 1984: Wandel sea basin – the North Greenland equivalent to Svalbard and the Barents Shelf. In: Spencer, A.M. et al. (eds): Petroleum Geology of the North European Margin, 97–107. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-5626-1_8

Håkansson, E. & Stemmerik, L. 1989: Wandel Sea basin – a new synthesis of the late Paleozoic to Tertiary accumulation in North Greenland. Geology 17, 683–686. https://doi.org/10.1130/0091-7613(1989)017<0683:wsbans>2.3.co;2

Håkansson, E., Heinberg, C. & Stemmerik, L. 1991: Mesozoic and Cenozoic history of the Wandel Sea Basin area. North Greenland. Bulletin Grønlands Geologiske Undersøgelse 160, 153–164.

Håkansson, E., Piasecki, S., Konnerup-Madsen, J. & Thomsen, E. 1994: A late, thermal event in the Wandel Sea Basin; eastern North Greenland. In: Håkansson, E. (ed): Wandel Sea BasIn: Basin Analysis 22, 9 pp. Copenhagen: University of Copenhagen.

Harrison, J. 2008: Regional variation in structural style, deformation kinematics, and summary of tectonic history, northeast Ellesmere Island. Geological Survey of Canada Bulletin 592, 245–284. https://doi.org/10.4095/226147

Harrison, J.C., Mayr, U., McNeil, D.H., Sweet, A.R., McIntyre, D.J., Eberle, J.J., Harington, C.R., Chalmers, J.A., Dam, G. & Nohr-Hansen, H. 1999: Correlation of Cenozoic sequences of the Canadian Arctic region and Greenland; implications for the tectonic history of northern North America. Bulletin of Canadian Petroleum Geology 47, 223–254.

Henriksen, N., Higgins, A.K., Kalsbeek, F. & Pulvertaft, T.C.R. 2009: Greenland from Archean to Quaternary. Descriptive text to the 1995 Geological map of Greenland. Geological Survey of Denmark and Greenland Bulletin 18, 126 pp. https://doi.org/10.34194/ggub.v185.5197

Higgins, A.K., Soper, N.J. & Leslie, A.G. 2000: The Ellesmerian and Caledonian orogenic belts of Greenland. Polarforschung 68, 141–151.

Hopper, J.R.et al. (eds). 2014: Tectonostratigraphic Atlas of the North-East Atlantic Region, 338 pp. Copenhagen: Geological Survey of Denmark and Greenland.

Hurford, A.J. & Green, P.F. 1983: The zeta age calibration of fission-track dating. Chemical Geology 41, 285–317. https://doi.org/10.1016/s0009-2541(83)80026-6

Hovikoski, J., Pedersen, G.K., Alsen, P., Lauridsen, B.W., Svennevig, K., Nøhr-Hansen, H., Sheldon, E., Dybkjær, K., Bojesen-Koefoed, J. & Piasecki, S. 2018: The Jurassic–Cretaceous lithostratigraphy of Kilen, Kronprins Christian Land, eastern North Greenland. Bulletin of the Geological Society of Denmark 66, 61–112. https://doi.org/10.37570/bgsd-2018-66-04

Ineson, J.R., Hovikoski, J., Sheldon, E., Piasecki, S., Alsen, P., Fyhn, M.B., Bjerager, M., Dybkjær, K., Guarnieri, P. & Lauridsen, B.W. 2020: Regional impact of Early Cretaceous tectono-magmatic uplift in the Arctic: implications of new data from eastern North Greenland. Terra Nova 00, 1–9. https://doi.org/10.1111/ter.12514

Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar-Bergström, K. 2006: Elevated, passive continental margins: long-term highs or Neogene uplifts? New evidence from West Greenland. Earth and Planetary Science Letters 248, 330–339. https://doi.org/10.1016/j.epsl.2006.05.036

Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar-Bergström, K. 2009: Formation, uplift and dissection of planation surfaces at passive continental margins – a new approach. Earth Surface Processes and Landforms 34, 683–699. https://doi.org/10.1002/esp.1766

Japsen, P., Green, P.F., Bonow, J.M., Bjerager, M. & Hopper, J.R. in press: Episodic burial and exhumation in North-East Greenland before and after opening of the North-East Atlantic. GEUS Bulletin 45(2).

Jokat, W., Lehmann, P., Damaske, D. & Nelson, J.B. 2016: Magnetic signature of North-East Greenland, the Morris Jesup Rise, the Yermak Plateau, the central Fram Strait: constraints for the rift/drift history between Greenland and Svalbard since the Eocene. Tectonophysics 691, 98–109. https://doi.org/10.1016/j.tecto.2015.12.002

Jones, M.T.et al. 2017: Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers. Scientific reports 7, 9 pp. https://doi.org/10.1038/s41598-017-06170-7

Larsen, H.C.et al. 1994: 13. Summary and principal results. In: Proceedings of the Ocean Drilling Program, Initial Reports 152, 279–292. College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.152.113.1994

Larsen, L.M., Pedersen, A.K., Tegner, C. & Duncan, R.A. 2014: Eocene to Miocene igneous activity in NE Greenland: northward younging of magmatism along the East Greenland margin. Journal of the Geological Society 171, 539–553. https://doi.org/10.1144/jgs2013-118

Lyck, J.M. & Stemmerik, L. 2000: Palynology and depositional history of the Paleocene? Thyra Ø Formation, Wandel Sea Basin, eastern North Greenland. Geology of Greenland Survey Bulletin 187, 21–49. https://doi.org/10.34194/ggub.v187.5193

Maher, H.D., Braathen, A., Bergh, S., Dallmann, W. & Harland, W.B. 1995: Tertiary or Cretaceous age for Spitsbergen’s fold-thrust belt on the Barents Shelf. Tectonics 14, 1321–1326. https://doi.org/10.1029/95tc01257

Mørk, A., Embry, A.F. & Weitschat, W. 1989: 11 Triassic transgressive – regressive cycles in the Sverdrup Basin. In: Collinson J.D. (ed): Correlation in Hydrocarbon Exploration, p. 113–130. Dordrecht: Springer.

Müller, R.D., et al. 2016: Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences 44, 107–138. https://doi.org/10.1146/annurev-earth-060115-012211

Oakey, G.N. & Chalmers, J.A. 2012: A new model for the Paleogene motion of Greenland relative to North America: plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland. Journal of Geophysical Research: Solid Earth 117, 1–28. https://doi.org/10.1029/2011jb008942

Okulitch, A. & Trettin, H. 1991: Late Cretaceous–early Tertiary deformation, Arctic Islands. Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland. Geological Survey of Canada, Geology of Canada Series 3, 469–490. https://doi.org/10.4095/133999

Paech, H.-J. & Estrada, S. 2018: Coal rank data and tectonic structure of Mesozoic and Paleogene sediments in North Greenland. In: Piepjohn, K.et al. (eds): Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens. Geological Society of America Special Papers 541. https://doi.org/10.1130/2018.2541(10)

Pedersen, G.K., Lauridsen, B.W., Svennevig, K., Bojesen-Koefoed, J.A., Nøhr-Hansen, H. & Alsen, P. 2018: Burial history of a folded cretaceous succession – a case study from the southern part of Kilen, eastern north Greenland. Cretaceous Research 89, 22–35. https://doi.org/10.1016/j.cretres.2018.03.007

Pedersen, S.A.S. & Håkansson, E. 2001: Kronprins Christian Land Orogeny deformational styles of the end Cretaceous transpressional mobile belt in eastern North Greenland. Polarforschung 69, 117–130.

Petersen, T.G., Thomsen, T., Olaussen, S. & Stemmerik, L. 2016: Provenance shifts in an evolving Eurekan foreland basIn: the Tertiary Central Basin, Spitsbergen. Journal of the Geological Society London 173, 634–648. https://doi.org/10.1144/jgs2015-076

Piasecki, S., Nøhr-Hansen, H. & Dalhoff, F. 2018: Revised stratigraphy of Kap Rigsdagen beds, Wandel Sea Basin, North Greenland. Newsletters on Stratigraphy 51, 411–425. https://doi.org/10.1127/nos/2018/0444

Piepjohn, K. & von Gosen, W. 2001: Polyphase deformation at the Harder Fjord Fault Zone (North Greenland). Geological Magazine 138, 407–434. https://doi.org/10.1017/s0016756801005660

Piepjohn, K., von Gosen, W. & Tessensohn, F. 2016: The Eurekan deformation in the Arctic: an outline. Journal of the Geological Society, London 173, 1007–1024. https://doi.org/10.1144/jgs2016-081

Rasmussen, J.A. & Smith, M.P. 2001: Conodont geothermometry and tectonic overburden in the northernmost East Greenland Caledonides. Geological Magazine 138, 687–698. https://doi.org/10.1017/s0016756801005908

Rasmussen, J.A.H. & Håkansson, E. 1996: First Permo-Carboniferous conodonts from North Greenland. Geological Magazine 133, 553–564. https://doi.org/10.1017/s0016756800007834

Ricketts, B.D. 1994: Basin analysis, Eureka Sound Group, Axel Heiberg and Ellesmere Islands, Canadian Arctic archipelago. Geological Survey of Canada Memoir 439, 119 pp. https://doi.org/10.4095/194814

Steel, R., Gjelberg, J., Helland-Hansen, W., Kleinspehn, K., Nøttvedt, A. & Rye-Larsen, M. 1985: The Tertiary strike-slip basins and orogenic belt of Spitsbergen. In: Biddle, K.T. & Christle-Blick, K. (eds): Strike-slip deformation, basin formation, and sedimentation. The Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication 37, 339–359. https://doi.org/10.2110/pec.85.37.0339

Stemmerik, L. 2000: Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 95–126. https://doi.org/10.1016/s0031-0182(00)00119-x

Stemmerik, L. & Worsley, D. 2005: 30 years on — Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norwegian Journal of Geology 85, 151–168.

Stemmerik, L., Dalhoff, F., Larsen, B.D., Lyck, J.M., Mathiesen, A. & Nilsson, I. 1998: Wandel Sea Basin, eastern North Greenland. Geology of Greenland Survey Bulletin 180, 55–62. https://doi.org/10.34194/ggub.v180.5086

Surlyk, F. 1990: Timing, style and sedimentary evolution of Late Palaeozoic – Mesozoic extensional basins in East Greenland. In: Hardman, R.F.P. & Brooks, J. (eds) Tectonic events responsible for Britain’s oil and gas reserves. Geological Society Special Publications (London) 55, 107–125. https://doi.org/10.1144/GSL.SP.1990.055.01.05

Surlyk, F. 1991: Tectonostratigraphy of north Greenland. Bulletin Grønlands Geologiske Undersøgelse 160, 27–47.

Svennevig, K., Guarnieri, P. & Stemmerik, L. 2016: Tectonic inversion in the Wandel Sea BasIn: A new structural model of Kilen (eastern North Greenland). Tectonics 35, 2896–2917. https://doi.org/10.1002/2016TC004152

Svennevig, K., Guarnieri, P. & Stemmerik, L. 2017: 3D restoration of a Cretaceous rift basin in Kilen, eastern North Greenland. Norwegian Journal of Geology 97, 21–32. https://doi.org/10.17850/njg97-1-02

Svennevig, K., Alsen, P., Guarnieri, P., Hovikoski, J., Wesenberg Lauridsen, B., Krarup Pedersen, G., Nøhr-Hansen, H. & Sheldon, E. 2018: Descriptive text to the Geological map of Greenland, 1:100 000, Kilen 81 Ø.1 Syd. Geological Survey of Denmark and Greenland Map Series 8, 1–29. https://doi.org/10.34194/geusm.v8.4526

Tegner, C., Storey, M., Holm, P.M., Thorarinsson, S.B., Zhao, X., Lo, C.H. & Knudsen, M.F. 2011: Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar-39Ar age of Kap Washington Group volcanics, North Greenland. Earth and Planetary Science Letters 303, 203–214. https://doi.org/10.1016/j.epsl.2010.12.047

Tessensohn, F. & Piepjohn, K. 2000: Eocene compressive deformation in Arctic Canada, North Greenland and Svalbard and its plate tectonic causes. Polarforschung 68, 121–124.

Vamvaka, A., Pross, J., Monien, P., Piepjohn, K., Estrada, S., Lisker, F. & Spiegel, C. 2019: Exhuming the top end of North America: episodic evolution of the Eurekan belt and its potential relationships to North Atlantic plate tectonics and Arctic climate change. Tectonics 38, 4207–4228. https://doi.org/10.1029/2019tc005621

von Gosen, W. & Piepjohn, K. 2003: Eurekan transpressive deformation in the Wandel Hav Mobile Belt (northeast Greenland). Tectonics 22, 28. https://doi.org/10.1029/2001TC901040

Published

26-04-2021

How to Cite

Japsen, P., Green, P. F., & Chalmers, J. A. . (2021). Thermo-tectonic development of the Wandel Sea Basin, North Greenland. GEUS Bulletin, 45(1). https://doi.org/10.34194/geusb.v45.5298

Most read articles by the same author(s)

<< < 1 2