Peneplains and tectonics in North-East Greenland after opening of the North-East Atlantic
DOI:
https://doi.org/10.34194/geusb.v45.5297Keywords:
Cenozoic,, denudation chronology, passive margin, stratigraphic landscape analysis, upliftAbstract
Elevated plateaus with deeply incised valleys characterise elevated, passive continental margins (EPCMs) in all climate zones. These features are, however, a topic of debate regarding when and how the large-scale landscapes formed. We have investigated and mapped the partly glaciated landscape of North-East Greenland (70–78°N). The area consists of crystalline basement and Palaeozoic–Mesozoic rift basins, capped by Palaeogene basalts that erupted during the northeast Atlantic break-up. Our stratigraphic landscape analysis reveals a typical EPCM dominated by two elevated erosion surfaces, extending 200 km east–west and 900 km north–south. The low-relief Upper Planation Surface (UPS; c. 2 km above sea level) cuts across basement and Palaeogene basalts, indicating that it was graded to base level defined by the Atlantic Ocean in post-basalt times and subsequently uplifted. The UPS formed prior to the deposition of mid-Miocene lavas that rest on it, south of the study area. In the interior basement terrains, the Lower Planation Surface (LPS) forms fluvial valley benches at c. 1 km above sea level, incised below the UPS. The LPS is thus younger than the UPS, which implies that it formed post mid-Miocene. Towards the coast, the valley benches merge to form a coherent surface that defines flat-topped mountains. This shows that the LPS was graded to near sea level and was subsequently uplifted. Hence, both the UPS and the LPS formed as peneplains – erosion surfaces graded to base level. The fluvial valley benches associated with the LPS further indicates that full glacial conditions were only established after the uplift of the LPS in the early Pliocene (c. 5 Ma). The uplift of the LPS led to re-exposure of a Mesozoic etch surface. We conclude that episodes of late Neogene tectonic uplift shaped the stepped landscape and elevated topography in North-East Greenland.
Downloads
References
Ager, D.V. 1973: The nature of the stratigraphic record, 151 pp. Chichester: John Wiley & Sons. https://doi.org/10.1002/gj.3350290115
Ahlmann, H.W. 1919: Geomorphological studies in Norway. Geografiska Annaler 1, 3–320. https://doi.org/10.1080/20014422.1919.11880647
Ahlmann, H.W. 1941: Studies in North-East Greenland 1939–1940, Part I & II. Geografiska Annaler 23, 145–209. https://doi.org/10.1080/20014422.1941.11880699
Ahnert, F. 1998: Introduction to Geomorphology, 352 pp. London: Arnold.
Amante, C. & Eakins, B.W. 2009: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. National Oceanic and Atmospheric Administration, NOAA Technical Memorandum NESDIS NGDC-24. 19 pp. Colorado: Boulder.
André, M. 2001: Tors et roches moutonnées en Laponie suédoise: antagonisme oufiliation? Géographie Physique et Quaternaire 55(3), 229–242. https://doi.org/10.7202/006852ar
André, M. 2002: Rates of postglacial rock weathering on glacially scoured outcrops (Abisko–Riksgränsen area, 68°N). Geografiska Annaler: Series A, Physical Geography 84, 139–150. https://doi.org/10.1111/j.0435-3676.2002.00168.x
Bate, K.J. 1997: Interpretation of the basal section of well Kangâmiut-1, offshore southern West Greenland, 28 pp. Geological Survey of Greenland, Report 1997/76. Unpublished report, Geological Survey of Greenland.
Baulig, H. 1935: The changing sea level. Transactions (Institute of British Geographers) 3, 46 pp. https://doi.org/10.2307/620990
Bengaard, H.J., Henriksen, N. & Jepsen, H.F. 2007: Geological maps of North and North-East Greenland, 1:250 000. Copenhagen: Geological Survey of Denmark and Greenland.
Benito-Calvo, A. & Pérez-González, A. 2007: Erosion surfaces and Neogene landscape evolution in the NE Duero Basin (north-central Spain). Geomorphology 88, 226–241. https://doi.org/10.1016/j.geomorph.2006.11.005
Bennike, O., Abrahamsen, N., Bak, M., Israelson, C., Konradi, P., Matthiessen, J. & Witkowski, A. 2002: A multi-proxy study of Pliocene sediments from Ile de France, North-East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 1–23. https://doi.org/10.1016/s0031-0182(02)00439-x
Bennike, O., Knudsen, K.L., Abrahamsen, N., Böcher, J., Cremer, H. & Wagner, B. 2010: Early Pleistocene sediments on Store Koldewey, Northeast Greenland. Boreas 39, 603–619. https://doi.org/10.1111/j.1502-3885.2010.00147.x
Bernard, T., Knudsen, K.L., Abrahamsen, N., Böcher, J., Cremer, H. & Wagner, B. 2016: Evidence for Eocene–Oligocene glaciation in the landscape of the East Greenland margin. Geology 44, 895–898. https://doi.org/10.1130/g38248.1
Birkelund, T. & Perch-Nielsen, K. 1976: Late Palaeozoic-Mesozoic evolution of central East Greenland. In: Escher, A. & Watt, W.S. (eds): Geology of Greenland, 305–339. Copenhagen: Geological Survey of Greenland.
Bishop, P. 2007: Long-term landscape evolution: linking tectonics and surface processes. Earth Surface Processes and Landforms 32, 329–365. https://doi.org/10.1002/esp.1493
Biswas, S., Coutand, I., Grujic, D., Hager, C., Stöcket, D. & Grasemann, B. 2007: Exhumation and uplift of the Shillong plateau and its influence on the eastern Himalayas: new constraints from apatite and zircon (U-Th-[Sm])/He and apatite fission track analyses. Tectonics 26, TC6013. https://doi.org/10.1029/2007TC002125
Blischke, A., Stoker, M.S., Brandsdóttir, B., Hopper, J.R., Peron-Pinvidic, G., Ólavsdóttir, J. & Japsen, P. 2019: The Jan Mayen microcontinent’s Cenozoic stratigraphic succession and structural evolution within the NE-Atlantic. Marine and Petroleum Geology 103, 702–737. https://doi.org/10.1016/j.marpetgeo.2019.02.008
Bonow, J.M. 2004: Palaeosurfaces and palaeovalleys on North Atlantic previously glaciated passive margins – reference forms for conclusions on uplift and erosion. PhD thesis, Thesis in geography with emphasis on physical geography 30, 17 pp. + 4 articles. Sweden: Stockholm University.
Bonow, J.M. 2005: Re-exposed basement landforms in the Disko region, West Greenland – disregarded data for estimation of glacial erosion and uplift modelling. Geomorphology 72, 106–127. https://doi.org/10.1016/j.geomorph.2005.05.006
Bonow, J.M., Japsen, P. & Nielsen, T.F.D. 2014: High-level landscapes along the margin of southern East Greenland – a record of tectonic uplift and incision after break up in the NE Atlantic. Global and Planetary Change 116, 10–29. https://doi.org/10.1016/j.gloplacha.2014.01.010
Bonow, J.M., Japsen, P., Green, P.F., Cobbold, P.R., Pedreira, A.J., Lilletveit, R. & Chiossi, D. 2009: Post-rift landscape development of north-east Brazil. Geological Survey of Denmark and Greenland Bulletin, 17, 81–84. https://doi.org/10.34194/geusb.v17.5020
Bonow, J.M., Japsen, P., Green, P.F., Wilson, R.W., Chalmers, J.A., Klint, K.E.S., van Gool, J.A.M., Lidmar-Bergström, K. & Pedersen, A.K. 2007a: A multidisciplinary study of Phanerozoic landscape development in West Greenland. Geological Survey of Denmark and Greenland Bulletin 13, 33–36. https://doi.org/10.34194/geusb.v13.4970
Bonow, J.M., Lidmar-Bergström, K., Japsen, P., Chalmers, J.A., Green, P.F. 2007b: Elevated erosion surfaces in central West Greenland and Southern Norway: their significance in integrated studies of passive margin development. Norwegian Journal of Geology 87(1–2), 197–206.
Bonow, J.M., Japsen, P., Lidmar-Bergström, K., Chalmers, J.A. & Pedersen, A.K. 2006a: Cenozoic uplift of Nuussuaq and Disko, West Greenland – elevated erosion surfaces as uplift markers of a passive margin. Geomorphology 80, 325–337. https://doi.org/10.1016/j.geomorph.2006.03.006
Bonow, J.M., Lidmar-Bergström, K. & Japsen, P. 2006b: Palaeosurfaces in central West Greenland as reference for identification of tectonic movements and estimation of erosion. Global and Planetary Change 50, 161–183. https://doi.org/10.1016/j.gloplacha.2005.12.011
Bonow, J.M., Lidmar-Bergström, K. & Näslund, J.O. 2003: Palaeosurfaces and major valleys in the area of the Kjølen Mountains, southern Norway – consequences of uplift and climatic change. Norsk Geografisk Tidsskrift/Norwegian Journal of Geography 57, 83–101. https://doi.org/10.1080/00291950310001360
Braun, J. 2018: A review of numerical modelling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity. Gondwana Research 53, 209–224. https://doi.org/10.1016/j.gr.2017.04.012
Brooks, C.K. 1985: Vertical crustal movements in the Tertiary of central East Greenland: a continental margin at a hot-spot. Zeitschrift für Geomorphologie 54, 101–117.
Brooks, C.K. 2011: The East Greenland rifted volcanic margin. Geological Survey of Denmark and Greenland Bulletin 24, 96 pp. https://doi.org/10.34194/geusb.v24.4732
Brunsden, D. 1993: The persistence of landforms. Zeitschrift für Geomorphologie Supplementband 93, 13–28.
Butt, F.A., Elverhøi, A., Forsberg, C.F. & Solheim, A. 2001: Evolution of the Scoresby Sund fan, central East Greenland – evidence from ODP site 987. Norwegian Journal of Geology 81(1), 3–15.
Calvet, M., Gunnell, Y. & Farines, B. 2015: Flat-topped mountain ranges: their global distribution and value for understanding the evolution of mountain topography. Geomorphology 241, 255–291. https://doi.org/10.1016/j.geomorph.2015.04.015
Chalmers, J.A., Green, P., Japsen, P. & Rasmussen, E.S. 2010: The Scandinavian mountains have not persisted since the Caledonian orogeny. A comment on Nielsen et al. (2009a). Journal of Geodynamics 50, 94–101. https://doi.org/10.1016/j.jog.2010.02.001
Channell, J., Smelror, M., Jansen, E., Higgins, S.M., Lehman, B., Eidvin, T. & Solheim, A. 1999: Age models for glacial fan deposits off East Greenland and Svalbard (sites 986 and 987). In: Jansen, E. et al. (eds): Proceedings Ocean Drilling Program, Scientific Results 162, 149–166. College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.162.008.1999
Coltorti, M., Dramis, F. & Ollier, C.D. 2007: Planation surfaces in Northern Ethiopia. Geomorphology 89, 287–296. https://doi.org/10.1016/j.geomorph.2006.12.007
Cook, S.J., Swift, D.A., Kirkbride, M.P., Knight, P.G. & Waller, R.I. 2020: The empirical basis for modelling glacial erosion rates. Nature Communications 11, 759 pp. https://doi.org/10.1038/s41467-020-14583-8
da Silva, B.V., Hackspacher, P.C., Ribeiro, M.C.S., Glasmacher, U.A., Gonçalves, A.O., Doranti-Tiritan, C., de Godoy, D.F. & Constantino, R.R. 2018: Evolution of the Southwestern Angolan MargIn: episodic burial and exhumation is more realistic than long-term denudation. International Journal of Earth Sciences 108, 1–25. https://doi.org/10.1007/s00531-018-1644-4
Davis, W.M. 1899: The geographical cycle. Geographical Journal 14(A), 481–504. https://doi.org/10.2307/1774538
Døssing, A., Japsen, P., Watts, A.B., Nielsen, T., Jokat, W., Thybo, H. & Dahl-Jensen, T. 2016: Miocene uplift of the NE Greenland margin linked to plate tectonics: seismic evidence from the Greenland Fracture Zone. NE Atlantic. Tectonics 35, 257–282. https://doi.org/10.1002/2015tc004079
Dowsett, H.J., Robinson, M.M., Haywood, A.M., Salzmann, U., Hill, D.J., Sohl, L., Chandler, M., Williams, M., Foley, K.M. & Stoll, D.K. 2010: The PRISMD3D paleo-environmental reconstruction. Stratigraphy 7, 123–139.
Ebert, K. & Hättestrand, C. 2010: The impact of Quaternary glaciations on inselbergs in northern Sweden. Geomorphology 115, 56–66. https://doi.org/10.1016/j.geomorph.2009.09.030
Egholm, D.L., Jansen, J.D., Brædstrup, C.F., Pedersen, V.K., Andersen, J.L., Ugelvig, S.V., Larsen, N.K. & Knudsen, M.F. 2017: Formation of plateau landscapes on glaciated continental margins. Nature Geoscience 10, 592–597. https://doi.org/10.1038/ngeo2980
Eldrett, J.S., Greenwood, D.R., Harding, I.C. & Huber, M. 2009: Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973. https://doi.org/10.1038/nature08069
Eldrett, J.S., Harding, I.C., Wilson, P.A., Butler, E. & Roberts, A.P. 2007: Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179. https://doi.org/10.1038/nature05591
Fairbridge, R.W. & Finkl, J.R. 1980: Cratonic erosional unconformities and peneplains. Journal of Geology 88, 69–86. https://doi.org/10.1086/628474
Feyling-Hanssen, R.W., Funder, S. & Petersen, K.S. 1983: The Lodin Elv formation: a Plio-Pleistocene occurrence in Greenland. Bulletin of the Geological Society of Denmark 31, 81–106.
Fjellanger, J. & Etzelmüller, B. 2003: Stepped palaeosurfaces in southern Norway – interpretation of DEM-derived topographic profiles. Norsk Geografisk Tidsskrift/Norwegian Journal of Geography 57, 102–110. https://doi.org/10.1080/00291950310001388
Freire, F., Gyllencreutz, R., Greenwood, S.L., Mayer, L., Egilsson, A., Thorsteinsson, T. & Jakobsson, M. 2015: High resolution mapping of offshore and onshore glaciogenic features in metamorphic bedrock terrain, Melville Bay, northwestern Greenland. Geomorphology 250, 29–40. https://doi.org/10.1016/j.geomorph.2015.08.011
Fu, P., Stroeven, A.P., Harbor, J.M., Heyman, J., Hättestrand, C. & Caffee, M.W. 2019: Ice cap erosion patterns from bedrock 10Be and 26Al, southeastern Tibetan Plateau. Earth Surfaces Processes and Landforms 44, 918–932. https://doi.org/10.1002/esp.4544
Funder, S., Bennike, O., Böcher, J., Israelson, C., Petersen, K.S. & Símonason, L.A. 2001: Late Pliocene Greenland – the Kap København formation in North Greenland. Bulletin of the Geological Society of Denmark 48, 117–134.
Gaina, C., Gernigon, L. & Ball, P. 2009: Paleocene – recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen micro continent. Journal of the Geological Society London 166, 601–616. https://doi.org/10.1144/0016-76492008-112
Gaina, C., Nasuti, A., Kimbell, G.S. & Blischke, A. 2017: Break-up and seafloor spreading domains in the NE Atlantic. Geological Society, London, Special Publications 447, 393–417. https://doi.org/10.1144/SP447.12
Gallagher, K., Brown, R. & Johnson, C. 1998: Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences 26, 519–572. https://doi.org/10.1146/annurev.earth.26.1.519
GEUS. 2007: Topographic maps of North and North-East Greenland 1:250 000. Copenhagen: Geological Survey of Denmark and Greenland.
Gilchrist, A.R. & Summerfield, M.A. 1990: Differential denudation and flexural isostasy in formation of rifted-margins upwarps. Nature 346, 739–742. https://doi.org/10.1038/346739a0
Glasser, N.F. & Warren, C.R. 1990: Medium scale landforms of glacial erosion in South Greenland: process and form. Geografiska Annaler: Series A, Physical Geography 72, 211–215. https://doi.org/10.1080/04353676.1990.11880317
GLOBE Task Team et al. 1999: The global land one-kilometre base elevation (GLOBE). Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration. http://www.ngdc.noaa.gov/mgg/topo/globe.html (accessed August 2019)
Godard, A., Simon-Coincon, R. & Lagasquie, J.-J. 2001: Planation surfaces in basement terrains. In: Godard, A. et al. (eds): Basement regions, 9–34. Berlin: Springer.
Green, P.F., Duddy, I.R., Japsen, P., Bonow, J.M. & Malan, J.A. 2017: Post-breakup burial and exhumation of the southern margin of Africa. Basin Research 29, 96–127. https://doi.org/10.1111/bre.12167
Green, P.F., Japsen, P., Chalmers, J.A., Bonow, J.M. & Duddy, I.R. 2018: Post-breakup burial and exhumation of passive continental margins: seven propositions to inform geodynamic models. Gondwana Research 53, 58–81. https://doi.org/10.1016/j.gr.2017.03.007
Green, P.F., Lidmar-Bergström, K., Japsen, P., Bonow, J.M. & Chalmers, J.A. 2013: Stratigraphic landscape analysis, thermochronology and the episodic development of elevated passive continental margins. Geological Survey of Denmark and Greenland Bulletin 30, 150 pp. https://doi.org/10.34194/geusb.v30.4673
Guillocheau, F., Simon, B., Baby, G., Bessin, P., Robin, C. & Dauteuil, O. 2018: Planation surfaces as a record of mantle dynamics: the case example of Africa. Gondwana Research 53, 82–98. https://doi.org/10.1016/j.gr.2017.05.015
Haider, V.L., Dunkl, I., von Eynatten, H., Ding, L., Frei, D. & Zhang, L. 2013: Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences 70–71, 79–98. https://doi.org/10.1016/j.jseaes.2013.03.005
Håkansson, L., Graf, A., Strasky, S., Ivy-ochs, S., Kubik, P.W., Hjort, C. & Schlüchter, C. 2007: Cosmogenic 10Be-ages from the Store Koldewey Island. NE Greenland, Geografiska Annaler: Series A, Physical Geography 89, 195–202. https://doi.org/10.1111/j.1468-0459.2007.00318.x
Hall, A.M. & Kleman, J. 2014: Glacial and periglacial buzzsaws: fitting mechanisms to metaphors. Quaternary Research 81, 189–192. https://doi.org/10.1016/j.yqres.2013.10.007
Hall, A.M., Ebert, K., Kleman, J., Nesje, A. & Ottesen, D. 2013a: Selective glacial erosion on the Norwegian passive margin. Geology 41, 1203–1206. https://doi.org/10.1130/G34806.1
Hall, A.M., Ebert, K. & Hättestrand, C. 2013b: Pre-glacial landform inheritance in a glaciated shield landscape. Geografiska Annaler: Series A, Physical Geography 95, 33–49. https://doi.org/10.1111/j.1468-0459.2012.00477.x
Hall, A.M., Krabbendam, M., van Boeckel, M., Goodfellow, B.W., Hättestrand, C., Heyman, J., Palamakumbura, R.N., Stroeven, A.P. & Näslund, J.-O. 2020: Glacial ripping: geomorphological evidence from Sweden for a new process of glacial erosion. Geografiska Annaler: Series A, Physical Geography 102. https://doi.org/10.1080/04353676.2020.1774244
Haller, J. 1971: Geology of the East Greenland Caledonides, 413 pp. London: Interscience Publishers.
Hamann, N.E., Whittaker, R.C. & Stemmerik, L. 2005: Geological development of the Northeast Greenland Shelf. Geological Society, London, Petroleum Geology Conference Series 6, 887–902. https://doi.org/10.1144/0060887
Henriksen, N. 2008: Geological history of Greenland: four billion years of earth evolution, 272 pp. Copenhagen: Geological Survey of Denmark and Greenland.
Henriksen, N., Higgins, A.K., Gilotti, J.A. & Smith, M.P. 2008: Introduction – the Caledonides of Greenland. In: Higgins, A.K. et al. (eds): The Greenland Caledonides: evolution of the Northeast Margin of Laurentia. Geological Society of America Memoir 202, v–xv. https://doi.org/10.1130/2008.1202(00)
Henriksen, N., Higgins, A.K., Kalsbeek, F. & Pulvertaft, T.C.R. 2009: Greenland from Archean to Quaternary: descriptive text to the 1995 Geological map of Greenland. Geological Survey of Denmark and Greenland Bulletin 18, 126 pp. https://doi.org/10.34194/ggub.v185.5197
Hetzel, R., Dunkl, I., Haider, V., Strobl, M., von Eynatten, H., Ding, L. & Frei, D. 2011: Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology 39, 983–986. https://doi.org/10.1130/G32069.1
Higgins, A.K., Gilotti, J.A. & Smith, M.P. (eds). 2008: The Greenland Caledonides: evolution of the Northeast Margin of Laurentia. Geological Society of America Memoir 202, 368 pp. https://doi.org/10.1130/MEM202
Jansen, E., Raymo, M. & Blum, P. 1996: Ocean drilling program, Leg 162 preliminary report, North Atlantic Arctic Gateways II, 345–387. College Station, Texas A and M University, TX. https://doi.org/10.2973/odp.pr.162.1995
Japsen, P. & Chalmers, J.A. 2000: Neogene uplift and tectonics around the North Atlantic: overview. Global and Planetary Change 24, 165–173. https://doi.org/10.1016/s0921-8181(00)00006-0
Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar-Bergström, K. 2006: Elevated, passive continental margins: long-term highs or Neogene uplifts? New evidence from West Greenland. Earth and Planetary Science Letters 248, 330–339. https://doi.org/10.1016/j.epsl.2006.05.036
Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A. & Lidmar-Bergström, K. 2009: Formation, uplift and destruction of planation surfaces at passive continental margins. Earth Surface Processes and Landforms 34, 683–699. https://doi.org/10.1002/esp.1766
Japsen, P., Chalmers, J.A., Green, P.F. & Bonow, J.M. 2012a: Elevated, passive continental margins: not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Global and Planetary Change 90–91, 73–86. https://doi.org/10.1016/j.gloplacha.2011.05.004
Japsen, P., Bonow, J.M., Green, P.F., Cobbold, P.R., Chiossi, D., Lilletveit, R., Magnavita, L.P. & Pedreira, A.J. 2012b: Episodic burial and exhumation history of NE Brazil after opening of the South Atlantic. Geological Society of America Bulletin 124, 800–816. https://doi.org/10.1130/b30515.1
Japsen, P., Green, P.F. & Chalmers, J.A. 2013: The mountains of North-East Greenland are not remnants of the Caledonian topography. A comment on Pedersen et al. (2012): Tectonophysics 530–531, 318–330. Tectonophysics 589, 234–238. https://doi.org/10.1016/j.tecto.2012.07.026
Japsen, P., Green, P.F., Bonow, J.M., Bjerager, M. & Hopper, J.R. In press: Thermo-tectonic history of North-East Greenland. GEUS Bulletin 45.
Japsen, P., Green, P.F., Bonow, J.M., Nielsen, T.F.D. & Chalmers, J.A. 2014: From volcanic plains to glaciated peaks: burial and exhumation history of southern East Greenland after opening of the NE Atlantic. Global and Planetary Change 116, 91–114. https://doi.org/10.1016/j.gloplacha.2014.01.012
Japsen, P., Green, P.F., Chalmers, J.A., Duddy, I. & Bonow, J.M. 2019: Elevated passive continental margins: numerical modelling vs observations: a comment on Braun (2018). Gondwana Research 65, 172–173. https://doi.org/10.1016/j.gr.2018.10.004
Jessen, O. 1943: Die Randschwellen der Kontinente. Petermanns Geographische Mitteilungen 241, 205 pp. Gotha: Justus Perthes.
Johansson, M., Olvmo, M. & Lidmar-Bergström, K. 2001: Inherited landforms and glacial impact of different palaeosurfaces in southwest Sweden. Geografiska Annaler, Series A: Physical Geography 83A, 67–89. https://doi.org/10.1111/1468-0459.00145
Jolley, D.W. & Whitham, A.G. 2004: A stratigraphical and palaeoenvironmental analysis of the sub-basaltic Palaeogene sediments of East Greenland. Petroleum Geoscience 10, 53–60. https://doi.org/10.1144/1354-079302-511
King, L.C. 1967: The morphology of the earth, 2nd edition, 726 pp. Edinburgh: Oliver & Boyd. https://doi.org/10.1180/minmag.1967.036.279.23
Kleman, J. & Hättestrand, C. 1999: Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum. Nature 402, 63–66. https://doi.org/10.1038/47005
Kleman, J. 1994: Preservation of landforms under ice sheets and ice caps. Geomorphology 9, 19–32. https://doi.org/10.1016/0169-555X(94)90028-0
Kleman, J. 2008: Geomorphology – where glaciers cut deep. Nature Geoscience 1, 343–344. https://doi.org/10.1038/ngeo210
Kleman, J., Stroeven, A.P. & Lundqvist, J. 2008: Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation. Geomorphology 97, 73–90. https://doi.org/10.1016/j.geomorph.2007.02.049
Krabbendam, M. & Bradwell, T. 2014: Quaternary evolution of glaciated gneiss terrains: pre-glacial weathering vs. glacial erosion. Quaternary Science Review 95, 20–42. https://doi.org/10.1016/j.quascirev.2014.03.013
Larsen, H.C., Saunders, A.D., Clift, P.D. & the Shipboard Scientific Party. 1994a: 13. Summary and principal results. In: Larsen, H.C. & Stewart, S.K. (eds): Proceedings of the Ocean Drilling Program, Initial Reports 152, 279–292. College Station, Ocean Drilling Program, TX. https://doi.org/10.2973/odp.proc.ir.152.113.1994
Larsen, H.C., Saunders, A.D., Clift, P.D., Beget, J., Wei, W. & Spezzaferri, S. 1994b: Seven million years of glaciation in Greenland. Science 264, 952–955. https://doi.org/10.1126/science.264.5161.952
Larsen, L.M., Pedersen, A.K., Sørensen, E.V., Watt, W.S. & Duncan, R.A. 2013: Stratigraphy and age of the Eocene Igtertivâ formation basalts, alkaline pebbles and sediments of the Kap Dalton Group in the graben at Kap Dalton, East Greenland. Bulletin of the Geological Society of Denmark 61, 1–18.
Larsen, L.M., Pedersen, A.K., Tegner, C. & Duncan, R.A. 2014: Eocene to Miocene igneous activity in NE Greenland: northward younging of magmatism along the East Greenland margin. Journal of the Geological Society of London 171, 539–553. https://doi.org/10.1144/jgs2013-118
Larsen, L.M., Watt, W.S. & Watt, M. 1989: Geology and petrology of the lower tertiary plateau basalts of the Scoresby Sund region, East Greenland. Grønlands Geologiske Undersøgelse Bulletin 157, 164 pp.
Larsen, P.-H. & Bengaard, H.-J. 1991: Devonian basin initiation in East Greenland: a result of sinistral wrench faulting and Caledonian extensional collapse. Journal of the Geological Society of London 148, 355–368. https://doi.org/10.1144/gsjgs.148.2.0355
Larsen, P.H. 1988: Relay structures in a Lower Permian basement-involved extension system, East Greenland. Journal of Structural Geology 10, 3–8. https://doi.org/10.1016/0191-8141(88)90122-8
Larsen, R.B. & Tegner, C. 2006: Pressure conditions for the solidification of the Skaergaard intrusion: eruption of East Greenland flood basalts in less than 300,000 years. Lithos 92, 181–197. https://doi.org/10.1016/j.lithos.2006.03.032
Lassen, A. & Thybo, H. 2012: Neoproterozoic and Palaeozoic evolution of SW Scandinavia based on integrated seismic interpretation. Precambrian Research 204–205, 75–104. https://doi.org/10.1016/j.precamres.2012.01.008
Li, J.J., Fang, X.M., Song, C.H., Pan, B.T., Ma, Y.Z. & Yan, M.D. 2014: Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research 81, 400–423. https://doi.org/10.1016/j.yqres.2014.01.002
Lidmar-Bergström, K. 1982: Pre-Quaternary geomorphological evolution in southern Fennoscandia. Sveriges Geologiska Undersökning, Ser. C, No. 785, 1–202.
Lidmar-Bergström, K. 1988: Denudation surfaces of a shield area in south Sweden. Geografiska Annaler Series A, Physical Geography 70A, 337–350. https://doi.org/10.2307/521267
Lidmar-Bergström, K. 1989: Exhumed Cretaceous landforms in south Sweden. Zeitschrift für Geomorphologie, Neue Folge, Supplementband 72, 21–40.
Lidmar-Bergström, K. 1997: A long-term perspective on glacial erosion. Earth Surface Processes and Landforms 22, 297–306. https://doi.org/10.1002/(sici)1096-9837(199703)22:3<297::aid-esp758>3.0.co;2-r
Lidmar-Bergström, K., Bonow, J.M. & Japsen, P. 2013: Stratigraphic landscape analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change 100, 153–171. https://doi.org/10.1016/j.gloplacha.2012.10.015
Lidmar-Bergström, K., Ollier, C.D. & Sulebak, J. 2000: Landforms and uplift history of southern Norway. Global and Planetary Change 24, 211–231. https://doi.org/10.1016/s0921-8181(00)00009-6
Lidmar-Bergström, K., Olvmo, O. & Bonow, J.M. 2017: The South Swedish Dome: a key structure for identification of peneplains and conclusions on Phanerozoic tectonics of an ancient shield. Journal of the Geological Society of Sweden (GFF) 139, 244–259. https://doi.org/10.1080/11035897.2017.1364293
Lindström, E. 1988: Are roches moutonnées mainly preglacial forms? Geografiska Annaler: Series A, Physical Geography 70A, 323–331. https://doi.org/10.1080/04353676.1988.11880263
Liu, F., Gao, H., Pan, B., Li, Z. & Su, H. 2019: Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Frontier of Earth Science 13, 55–74. https://doi-org.ezproxy.its.uu.se/10.1007/s11707-018-0707-y
Ma, Z. et al. 2020: Landscape evolution of the Dabanshan planation surface: implications for the uplift of the eastern tip of the Qilian Mountains since the Late Miocene. Geomorphology 356, 107091. https://doi.org/10.1016/j.geomorph.2020.107091
Mathiesen, A., Bidstrup, T. & Christiansen, F.G. 2000: Denudation and uplift history of the Jameson Land basin, East Greenland – constrained from maturity and apatite fission data. Global and Planetary Change 24, 275–301. https://doi.org/10.1016/s0921-8181(00)00013-8
Medvedev, S., Souche, A. & Haartz, E.H. 2013: Influence of ice sheet and glacial erosion on passive margins of Greenland. Geomorphology 193, 36–46. https://doi.org/10.1016/j.geomorph.2013.03.029
Migoń, P. & Lidmar-Bergström, K. 2001: Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth-Science Reviews 56, 285–324. https://doi.org/10.1016/S0012-8252(01)00068-X
Mudelsee, M. & Raymo, M.E. 2005: Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20, PA4022. https://doi.org/10.1029/2005PA001153
Neuhoff, P.S., Watt, W.S., Bird, D.K. & Pedersen, A.K. 1997: Timing and structural relations of regional zeolite zones in basalts of the East Greenland continental margin. Geology 25, 803–806. https://doi.org/10.1130/0091-7613(1997)025<0803:tasror>2.3.co;2
Nielsen, S.B. et al. 2009: The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis. Journal of Geodynamics 47, 72–95. https://doi.org/10.1016/j.jog.2008.09.001
Nielsen, T.F.D., Soper, N.J., Brooks, C.K., Faller, A.M., Higgins, A.K. & Matthews, D.W. 1981: The pre-basaltic sediments and the Lower Basalts at Kangerdlugssuaq, East Greenland: their stratigraphy, lithology, palaeomagnetism and petrology. Meddelelser om Grønland Geoscience 6, 1–25.
Nøhr-Hansen, H., Nielsen, L.H., Sheldon, E., Hovikovski, J. & Alsen, P. 2011: Palaeogene deposits in North-East Greenland. Geological Survey of Denmark and Greenland Bulletin 23, 61–64. https://doi.org/10.34194/geusb.v23.4867
Ollier, C.D. & Pain, C.F. 1997: Equating the basal unconformity with the palaeoplaIn: a model for passive margins. Geomorphology 19, 1–15. https://doi.org/10.1016/s0169-555x(96)00048-7
Parsons, A. et al. 2017: Structural evolution and basin architecture of the Traill Ø region, NE Greenland: a record of polyphase rifting of the East Greenland continental margin. Geosphere 13, 733–770. https://doi.org/10.1130/ges01382.1
Pedersen, A.K., Watt, M., Watt, W.S. & Larsen, L.M. 1997: Structure and stratigraphy of the Early Tertiary basalts of the Blosseville Kyst, East Greenland. Journal of the Geological Society of London 154, 565–570. https://doi.org/10.1144/gsjgs.154.3.0565
Pedersen, V.K. & Egholm, D.L. 2013: Glaciations in response to climate variations preconditioned by evolving topography. Nature 493, 206–210. https://doi.org/10.1038/nature11786
Pedersen, V.K., Larsen, N.K. & Egholm, D.L. 2019: The timing of fjord formation and early glaciations in North and Northeast Greenland. Geology 47, 682–686. https://doi.org/10.1130/g46064.1
Pedersen, V.K., Nielsen, S.B. & Gallagher, K. 2012: The post-orogenic evolution of the Northeast Greenland Caledonides constrained from apatite fission track analysis and inverse geodynamic modelling. Tectonophysics 530–531, 318–330. https://doi.org/10.1016/j.tecto.2012.01.018
Penck, W. 1924: Die morphologische analyse. Geographische Abhandlungen. 2. Reihe, Hefte 3.XX u. 283 S. Stuttgart: Engelhorn.
Pérez, L.F., Nielsen, T., Knutz, P.C., Kuijpers, A. & Damm, V. 2018: Large-scale evolution of the central-east Greenland margIn: new insights to the North Atlantic glaciation history. Global and Planetary Change 163, 141–157. https://doi.org/10.1016/j.gloplacha.2017.12.010
Petersen, T.G. 2019: Seismic stratigraphy of the post-breakup succession offshore Northeast Greenland: links to margin uplift. Marine and Petroleum Geology 103, 422–437. https://doi.org/10.1016/j.marpetgeo.2019.03.007
Peulvast, J., Bonow, J.M., Japsen, P., Wilson, R.W. & McCaffrey, K.J.W. 2011: Morphostructural patterns and landform generations in a glaciated passive margIn: the Kobberminebugt-Qaqortoq region of South Greenland. Geodinamica Acta 24(1), 1–19. https://doi.org/10.3166/ga.24.1-19
Peulvast, J.P. & Bétard, F. 2015: Landforms and landscape evolution of the equatorial margin of northeast Brazil. Springer Earth System Sciences. Cham: Springer.
Peulvast, J.P. & Claudino Sales, V. 2004: Stepped surfaces and palaeolandforms in the northern Brazilian «Nordeste»: constraints on models of morphotectonic evolution. Geomorphology 62, 89–122. https://doi.org/10.1016/j.geomorph.2004.02.006
Peulvast, J.P. 1988: Pre-glacial landform evolution in two coastal high latitude mountains: Lofoten-Vesterålen (Norway) and Scoresby Sund area (Greenland). Geografiska Annaler Series A, Physical Geography 70A, 351–360. https://doi.org/10.2307/521268
Peulvast, J.P. 1991: Structural geomorphology and morphotectonic evolution of an uplifted rifted margIn: the Scoresby Sund area, East Greenland. Zeitschrift für Geomorphologie Supplementband 82, 17–34.
Peulvast, J.P., Betard, F. & Lageat, Y. 2009: Long-term landscape evolution and denudation rates in shield and platform areas: a morphostratigraphic approach. Géomorphologie: Relief, Processus, Environnement 15, 95–107. https://doi.org/10.4000/geomorphologie.7540
Pulvertaft, T.C.R. & Larsen, J.G. 2002: Note on the sub-basalt surface in the hinterland of the Nuussuaq basin, central West Greenland. Geological Survey of Denmark and Greenland Report 2002/39, 15 pp.
Raymo, M., Grant, B., Horowitz, M. & Rau, G. 1996: Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Marine Micropaleontology 27, 313–326. https://doi.org/10.1016/0377-8398(95)00048-8
Reusch, H. 1901: Nogle bidrag till forstaaelsen af hvorledes Norges dale og fjelde er blevene til. Norges Geologiske Undersøgelse 32, 124–263.
Sarnthein, M., Bartoli, G., Prange, M., Schmittner, A., Schneider, B., Weinelt, M., Andersen, N. & Garbe-Schönberg, D. 2009: Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Climate of the Past 5, 269–283. https://doi.org/10.5194/cp-5-269-2009
Schaefer, J.M., Finkel, R.C., Balco, G., Alley, R.B., Caffee, M.W., Briner, J.P., Young, N.E., Gow, A.J. & Schwartz, R. 2016: Greenland was nearly ice-free for extended periods during the Pleistocene. Nature 540, 252–255. https://doi.org/10.1038/nature20146
Shackleton, N.J., Imbrie, J. & Pisias, N. 1988: The evolution of oceanic oxygen-isotope variability in the North Atlantic over the past three million years. Philosophical Transactions of the Royal Society of London. B: Biological Sciences 318, 679–688. https://doi.org/10.1098/rstb.1988.0030
Simon-Coinçon, R., Thiry, M. & Schmitt, J.-M. 1997: Variety and relationships of weathering features along the early Tertiary palaeosurface in the southwestern French Massif Central and the nearby Aquitaine Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 51–79. https://doi.org/10.1016/s0031-0182(96)00122-8
Small, E.E. & Anderson, R.S. 1998: Pleistocene relief production in Laramide mountain ranges, Western United States. Geology 26, 123–126. https://doi.org/10.1130/0091-7613(1998)026<0123:prpilm>2.3.co;2
Solgaard, A.M., Bonow, J.M., Langen, P., Japsen, P. & Hvidberg, C. 2013: Mountain building and the initiation of the Greenland ice sheet. Palaeogeography Palaeoclimatology Palaeoecology 392, 161–176. https://doi.org/10.1016/j.palaeo.2013.09.019
Steer, P., Huismans, R.S., Valla, P.G., Gac, S. & Herman, F. 2012: Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nature Geoscience 5, 635–639. https://doi.org/10.1038/ngeo1549
Steinberger, B., Spakman, W., Japsen, P. & Torsvik, T.H. 2015: The key role of global solid-Earth processes in preconditioning Greenland’s glaciation since the Pliocene. Terra Nova 27, 1–8. https://doi.org/10.1111/ter.12133
Stemmerik, L. 2000: Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 95–126. https://doi.org/10.1016/s0031-0182(00)00119-x
Stemmerik, L., Christiansen, F.G., Piasecki, S., Jordt, B., Marcussen, C. & Nøhr-Hansen, H. 1993: Depositional history and petroleum geology of the Carboniferous to Cretaceous sediments in the northern part of East Greenland. In: Vorren, T.O. et al. (eds): Arctic geology and petroleum potential. Norwegian Petroleum Society Special Publications 2, 67–87. https://doi.org/10.1016/b978-0-444-88943-0.50009-5
Storey, M., Pedersen, A.K., Stecher, O., Bernstein, S., Larsen, H.C., Larsen, L.M., Baker, J.A. & Duncan, R.A. 2004: Long-lived postbreakup magmatism along the East Greenland margIn: evidence for shallow-mantle metasomatism by the Iceland plume. Geology 32, 173–176. https://doi.org/10.1130/g19889.1
Sugden, D.E. 1974: Landscapes of glacial erosion in Greenland and their relationship to ice, topographic and bedrock conditions. Institute of British Geographers Special Publications 7, 177–195.
Sugden, D.E., Balco, G., Cowdery, S.G., Stone, J.O. & Sass, L.C. 2005: Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology 67, 317–334. https://doi.org/10.1016/j.geomorph.2004.10.007
Sugden, D.E., Glasser, N. & Clapperton, C.M. 1992: Evolution of large roches moutonnées. Geografiska Annaler Series A, Physical Geography 74A, 253–264. https://doi.org/10.1080/04353676.1992.11880368
Surlyk, F. & Ineson, J. 2003: The Jurassic of Denmark and Greenland: key elements in the reconstruction of the North Atlantic Jurassic rift system. In: Ineson, J. & Surlyk, F. (eds.): The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin 1, 9–20. https://doi.org/10.34194/geusb.v1.4644
Surlyk, F. 1977: Mesozoic faulting in East Greenland. Geologie en Mijnbouw. Netherlands Journal of Geosciences 56, 311–327.
Surlyk, F. 1978: Jurassic basin evolution of East Greenland. Nature 274, 130–133. https://doi.org/10.1038/274130a0
Surlyk, F. 1990: Timing, style and sedimentary evolution of Late Palaeozoic – mesozoic extensional basins of East Greenland. In: Hardman, R.F.P. & Brooks, J. (eds.): Tectonic events responsible for Britain’s oil and gas reserves. Geological Society, London, Special Publications 55, 107–125. https://doi.org/10.1144/GSL.SP.1990.055.01.05
Surlyk, F. 2003: The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. Geological Survey of Denmark and Greenland Bulletin 1, 659–722. https://doi.org/10.34194/geusb.v1.4674
Swift, D.A., Persano, C., Stuart, F.M., Gallagher, K. & Whitham, A. 2008: A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region. Geomorphology 97, 109–125. https://doi.org/10.1016/j.geomorph.2007.02.048
Thiede, J., Winkler, A., Wolf-Welling, T., Eldholm, O., Myhre, A.M., Baumann, K.H., Henrich, R. & Stein, R. 1998: Late Cenozoic history of the Polar North Atlantic: results from ocean drilling. Quaternary Science Reviews 17, 185–208. https://doi.org/10.1016/s0277-3791(97)00076-0
Vigran, J.O., Stemmerik, L. & Piasecki, S. 1999: Stratigraphy and depositional evolution of the uppermost Devonian-Carboniferous (Tournaisian-Westphalian) non-marine deposits in north-east Greenland. Palynology 23, 115–152. https://doi.org/10.1080/01916122.1999.9989525
Vischer, A. 1943: Die postdevonische Tektonik von Ostgrönland zwischen 74° und 75°N.Br. Kuhn Ø, Wollaston Forland, Clavering Ø und angrenzende Gebiete. Meddelelser om Grønland 133, 194 pp.
Wager, L.R. & Deer, W.A. 1939: Geological investigations in east Greenland. Part III. The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland. Meddelelser om Grønland 105(4), 352 pp.
Willerslev, E. et al. 2007: Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114. https://doi.org/10.1126/science.1141758
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Johan M. Bonow, Peter Japsen
This work is licensed under a Creative Commons Attribution 4.0 International License.
GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.