Vol. 11 | 2006

Origin and evolution of the Kangâmiut mafic dyke swarm, West Greenland

RESEARCH ARTICLE
Published December 5, 2006
Kyle R Mayborn
+
Charles E Lesher
+
RESEARCH ARTICLE
Published December 5, 2006
Mineral grains as seen under a microscope.
Abstract
Downloads
Keywords

dyke swarm, Laurentia, Palaeoproterozoic, rifting

License

Copyright (c) 2006 Kyle R Mayborn, Charles E Lesher

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.

Abstract

The Kangâmiut dyke swarm in West Greenland intruded Archaean terrains at 2.04 Ga, and its northern portion was subsequently metamorphosed to granulite facies during the Nagssugtoqidian orogeny (c. 1.8 Ga). Mineral and whole-rock major and trace element compositions show that the parental magmas for the dyke swarm differentiated by the fractionation of olivine, clinopyroxene, plagioclase and late stage Fe-Ti oxides. Petrographical observations and the enrichment of K2O during differentiation argue that hornblende was not an important fractionating phase. Field observations suggest emplacement at crustal levels above the brittle–ductile transition, and clinopyroxene geothermobarometry constrains dyke emplacement depths to less than 10 km. Granulite facies metamorphism of the Kangâmiut dykes and their host rocks in the northern portion of the swarm requires subsequent burial to c. 30 km, related to roughly 20 km of crustal thickening between the time of dyke emplacement and peak metamorphism during the Nagssugtoqidian orogeny. Kangâmiut dykes are characterised by low Ba/La ratios (12 ± 5), and high Nb/La ratios (0.8 ± 0.2), compared to subduction related basalts (Ba/La c. 25; Nb/La c. 0.35). These geochemical characteristics argue that the Kangâmiut dykes are not related to subduction processes. Forward modelling of rare-earth element data requires that primitive magmas for the Kangâmiut dykes originated from a moderately depleted mantle source with a mantle potential temperature of c. 1420°C. The inferred potential temperature is consistent with potential temperature estimates for ambient mantle at 2.0 Ga derived from secular cooling models and continental freeboard constraints. The geochemistry and petrology of the Kangâmiut dykes support a model that relates the dyke activity to passive rifting of the proposed Kenorland supercontinent rather than to mantle plume activity or subduction.

Keywords

dyke swarm, Laurentia, Palaeoproterozoic, rifting

License

Copyright (c) 2006 Kyle R Mayborn, Charles E Lesher

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

GEUS Bulletin is an open-access, peer-reviewed journal published by the Geological Survey of Denmark and Greenland (GEUS). This article is distributed under a CC-BY 4.0 licence, permitting free redistribution and reproduction for any purpose, even commercial, provided proper citation of the original work. Author(s) retain copyright over the article contents. Read the full open access policy.

Downloads

Download data is not yet available.
Read More In This Issue

Editors: A.A. Garde and F. Kalsbeek

Central West Greenland exposes a large region of Archaean continental crust that was rifted and subsequently reworked in the Palaeoproterozoic during the Nagssugtoqidian and Rinkian orogenies. The southern margin of the Nagssugtoqidian orogen with its deformed Kangâmiut dykes is a classic example of an orogenic [...]