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Abstract
The renewable energy transition has increased the demand for offshore construction in the Danish 
North Sea energy sector. This development underpins the need for further investigation of poten-
tial geological hazards and associated risks to avoid accidents involving people, the environment or 
infrastructure. A scientific approach to de-risking requires an understanding of the seabed and the 
buried geosystems. Understanding geosystems is the first step in the de-risking process of offshore 
construction. In this study, we review three key geosystem elements in the Danish North Sea, repre-
sented by (1) shallow stratigraphy and geomorphology, (2) glacial tectonics and salt movement and 
(3) subsurface fluid migration. We summarise the current state of knowledge of these geosystem 
elements and identify multiple risks associated with each geosystem in the region. Such investiga-
tions are critical for understanding the geotechnical behaviour of the subsurface and identifying 
and de-risking of potential geohazards during the construction of future energy developments in 
the Danish North Sea region.
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1. Introduction
The Danish North Sea (DNS) is an important asset that provides a suite of 
important functions and services to Danish and international societies. These 
include not only fisheries and cargo transportation but also important geo-
system services such as oil and gas production, CO2 storage and offshore 
renewable energy. In addition to these services, the DNS contains important 
habitats for a variety of birds, fish and marine mammals (Danish Maritime 
Authority 2023).

The renewable energy transition will impose increased offshore construc-
tion pressure, including windfarms, cable routes and energy islands to the 
DNS. This places a demand on marine spatial planning, not just for the DNS 
but the entire North Sea region, which includes the German, British, Dutch, 
Belgian and Norwegian Exclusive Economic Zones (EEZs; Cotterill et al. 2017a; 
Fleischer et al. 2022; Petrie et al. 2022; Danish Maritime Authority 2023). The 
risks associated with these large-scale offshore construction projects are 
potentially immense, in terms of both geotechnical issues, health and safety 
and environmental risks, including construction failure, underwater noise, 
suspended sediments, pollution and changes to marine habitats (Le et  al. 
2014; Degraer et al. 2020; Mooney et al. 2020). Adding to the complexity of 
the energy transition is the uncertainty concerning the rentability of offshore 
wind projects. Sound economic models are going to be crucial for reaching a 
6 GW output from offshore wind energy to meet a Danish reduction target of 
70% compared to 1991 (Møllgaard et al. 2024).
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To facilitate marine planning of the DNS in the 
energy transition era that builds on safe and sustain-
able approaches, a comprehensive understanding of 
the underlying marine geosystems is required. Due to 
hydrocarbon prospecting and extraction over the last 
five decades (Adegbamigbe et al. 2022), there is already 
significant knowledge on the deep geology. A similar 
knowledge base for the shallow geosystems, i.e. the 
upper 500 m below the seafloor, is only just starting to 
emerge.

A geosystem is closely related to the term geosys-
tem services. This has been defined as either ‘the direct 
result of the planet’s geodiversity’ or as providing ‘bene-
fits specifically resulting from the subsurface’ (Frisk et al. 
2022). In terms of de-risking offshore construction, we 
have adopted a more specific definition. Thus, geosys-
tems in this context constitute geological features that 
influence offshore construction. Through reviewing pub-
lished literature, this paper describes how knowledge of 
near-surface geology in the offshore environment of the 
DNS can help to de-risk the offshore construction pro-
cess. We focus on three key geosystem elements rep-
resented by shallow stratigraphy and geomorphology, 
glacial tectonics and salt migration and subsurface fluid 
migration (Table 1).

1.1. Geological background
The North Sea is an epicontinental sea, bordered by 
the UK to the west, Norway and Denmark to the east 
and Germany, the Netherlands and Belgium to the 
south (Fig. 1). The North Sea Basin was initiated as a 
rift system in the early Triassic, which terminated in 
the Paleocene (Ziegler 1992). Up to 3000 m of Cenozoic  
sediments have accumulated in the basin (Cameron 
et  al. 1987; Huuse & Clausen 2001; Gołedowski et  al. 
2012; Ottesen et  al. 2014). The thickness of the sed-
iments representing the Quaternary period (last 
2.6  million years) may be up to 800 m in the central 
North Sea (Nielsen et  al. 2008; Ottesen et  al. 2014; 
Phillips et  al. 2017). These sediments are typically 
heterogenous and have been deposited, reworked and 
deformed largely as a result of glacial processes asso-
ciated with the cyclic expansion and decay of large ice 
sheets in north-west Europe (Knudsen & Sejrup 1993; 

Hughes et al. 2016; Rea et al. 2018; Batchelor et al. 2019; 
Kirkham et  al. 2022). During the Elsterian (c. 500–400 
Kyr BP) and Saalian (c. 380–130 Kyr BP) glacial periods, 
the entire DNS was covered by ice (Van der Vegt et al. 
2012), which locally resulted in erosion into older 
Palaeogene or Cretaceous deposits. Prominent rem-
nants of these glaciations are expressed as buried tun-
nel valleys (Huuse & Lykke-Andersen 2000; Benvenuti 
et al. 2018; Prins et al. 2020) or as glaciotectonic com-
plexes (Andersen et al. 2005; Winsemann et al. 2020). 
Conversely, the more recent Weichselian glaciation (c. 
117–11.5 Kyr BP) covered only the northern and west-
ern parts of the DNS (Fig. 2D; Hughes et al. 2016).

The Last Glacial Maximum (LGM; 22–18 Kyr BP) 
represents a phase of major expansion of the Fen-
noscandian Ice Sheet inducing large variations in geo-
morphology and sediment distribution across the 
region. Areas close to the Weichselian ice margin are 
often marked by an increase in geological complex-
ity, which may involve interlayering of till, meltwater 
sediments and proglacial lake infill deposits (Fig. 2C). 
These features may be preserved within buried valleys 
and other paleo-landscape depressions such as those 
formed by glaciotectonic deformation (Moreau & Huuse 
2014; Prins & Andresen 2019).

During and after the LGM, widespread marsh depos-
its formed in a boreal semi-submerged landscape of the 
German North Sea (Coughlan et al. 2018). A similar land-
scape evolution has also been suggested for the south-
western part of the DNS based on shallow seismic and 
acoustic data (Prins & Andresen 2019; Andresen et  al. 
2022) although paleo-environmental constraints on 
landscape development around the last low-stand are 
sparse.

Following the last deglaciation, from about 11,000 
years BP, most of the DNS was presumably above sea 
level, forming a low relief landscape with lakes and 
bogs commonly infilling topographic depressions 
(Coughlan et  al. 2018). As the post-glacial landscape 
became inundated by rising sea-levels, multiple chan-
nels were formed in connection with riverine drainage 
systems (e.g. Elbe Paleo-valley), which gradually trans-
formed into estuaries (Hepp et  al. 2017, 2019; Prins 
& Andresen 2019; Andresen et al. 2022). Continuation 
of the Holocene transgression meant that by about 

Table 1 Summary of geosystems and their associated risks and methods of identification.

Geosystem Associated risks Risk-reducing investigations

Shallow stratigraphy and geomorphology Unpredicted lateral variations in soil behaviour. Improved regional stratigraphic models.

Glacial tectonics and salt movement
Unpredicted lithology, potential fluid migration, 
variation in geotechnical properties.

Mapping past ice movements and their influence 
on the sediments; describing overburden above 
salt structures.

Fluid migration Potential blowouts, changes in soil cohesion/
strength.

Understanding shallow fluid migration paths and 
mechanisms; mapping shallow gas.
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9.3 Kyr BP, the DNS was subject to full marine condi-
tions and influenced by strong tidal currents that ini-
tiated the deposition of large sand banks, presently 
known as Little Fisher Bank and the Jylland Bank (Leth 
1996; Fig. 3). These features, like many other shallow 
areas of the DNS, remain hydrographically dynamic 
with mobile sand units forming the modern seabed 
(Anthony & Leth 2002; Nørgaard-Pedersen & Rödel 
2021).

Our knowledge of North Sea geosystems that iden-
tifies the foundation zone for offshore constructions is 
rooted in the complex Quaternary strata, involving mul-
tiple phases of deposition, erosion and glacial loading 
and unloading. Although several studies on the Qua-
ternary stratigraphy in the North Sea have emerged 
in recent years (Le Bot et  al. 2005; Rijsdijk et  al. 2005; 
Cotterill et al. 2017b; Coughlan et al. 2018; Prins & Andre-
sen 2019; Petrie et al. 2022), the Quaternary succession 
of the DNS remains poorly constrained, both in terms of 
chronostratigraphy, lithological variation and geotech-
nical properties. Closing this knowledge-gap requires 
densely spaced and high-resolution data coverage 
aimed at mapping the shallow geosystems and would 

provide information that can de-risk offshore services 
now and in the future.

1.2. De-risking in a geosystem context
Risk, in the context of a geosystem, can be regarded 
as an assessment of the probability and consequence 
resulting in a negative impact produced by a specific 
geosystem element (Copping et al. 2020). This could be 
the likelihood and consequence of a ship grounding in 
areas with varying water depths, or the likelihood and 
consequence of a punch-through failure for a jack-up 
rig, installed on an undiscovered buried valley. A buried 
tunnel valley poses no risk to a ship passing over it, but 
if it results in a subsurface failure below a jack-up rig, 
the consequences can potentially be fatal (Bienen et al. 
2015). Consequences may also be financial, for exam-
ple, as recently experienced in the Neart na Gaoithe off-
shore windfarm in the UK Sector, where the likelihood 
of wind turbine generator foundation installation failing 
due to rockhead variability had not been foreseen and 
had a financial consequence of hundreds of millions of 
Euros (Watts et al. 2021). Such examples illustrate that 
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risk is closely related to the interaction between humans 
and geosystems.

Understanding geosystems is the first step in the 
de-risking process of offshore construction. This typ-
ically involves a desktop study, which describes the 
potential risks at a specific location, based on existing 
data and knowledge from the literature (e.g. Owen et al. 
2020). Desktop studies highlight areas that require fur-
ther investigation and help to inform potential risks 
associated with the area of interest. During the initial 

phases of site investigation, the first step is to generate 
a representative preliminary ground model (PGM) for 
the investigation area, which is typically based on any 
existing geophysical, geological and geotechnical data. 
The PGMs will then subsequently be developed further 
to form a fully integrated ground model based on addi-
tional site investigations and the collection of site-spe-
cific data (Cook et al. 2014). The PGM will also aid in the 
survey design to optimise ship time and thus reduce 
costs. Further advantages from having a high level of 
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understanding of the geosystems include reducing the 
risk of project delays due to unforeseen ground con-
ditions. These are extremely costly and not only delay 
the project itself but also reduce the chance of meeting 
political goals such as reducing carbon emissions.

2. Geosystem elements and their 
potential risks
This paper focuses on the potential risks associated 
with the following three geosystem elements in the DNS 
(Fig. 2):

1.	 shallow stratigraphy and geomorphology (Fig. 2C and 
2D).

2.	glacial tectonics and salt movement (Fig. 2B)
3.	 subsurface fluid migration (Fig. 2A)

2.1. Shallow stratigraphy and geomorphology
An understanding of the shallow stratigraphy (typically 
down to 200–500 m below seabed) is the basic frame-
work for gaining information on the subsurface geo-
technical properties. Knowing the lateral and vertical 

variation in lithology and mapping subsurface strati-
graphic boundaries are essential for foundation design 
for large constructions such as wind turbine generators 
or artificial islands (Fig. 2C).

In the inner Danish waters, a recent desktop study 
identified a thick succession of weakly consolidated gla-
ciomarine clays (Jensen & Bennike 2022). This resulted 
in the windfarm project south of Hesselø to be paused 
and demanded new site investigations to assess the 
subsurface geological constraints in the area.

In the DNS, numerous site surveys have been carried 
out in relation to offshore construction, but efforts to 
synthesise the results between sites have been sparse 
(Prins & Andresen 2021; Petrie et al. 2024). Integrating 
geotechnical data with robust stratigraphic models has 
the potential to reduce both risks and costs in relation to 
offshore construction (Velenturf et al. 2021; Petrie et al. 
2024) and help avoid delaying large-scale offshore con-
struction projects.

Ice-dammed lakes typically form massive deposits 
of soft clay, which can pose a hazard for the develop-
ment of offshore windfarms. A phase of ice-dammed 
lake development during the Last Glacial Maximum has 
been suggested for the DNS area (Hjelstuen et al. 2018; 
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Fig.  2D). The geographical extent of this lake phase is 
bound by uncertainties although recent observations 
support a wider presence across the central and south-
ern DNS (Andresen et al. 2022; Knutz et al. 2022). Fur-
ther work is needed to constrain these clay-rich units 
in terms of lateral extent, thickness and geotechnical 
properties.

Understanding the subsurface geology requires 
knowledge of the stratigraphic units, their distribution 
and their lithological variation. However, in order to 
generate a predictive subsurface model, the geologi-
cal history and depositional environment need to be 
constrained, which require the geomorphology and 
sedimentological processes of the subsurface to be 
interpreted (Cotterill et al. 2017a).

The shallow subsurface in the North Sea contains 
multiple different glacial geomorphologies, includ-
ing prominent positive landforms such as eskers and 
moraine ridges (Dove et  al. 2017; Emery et  al. 2019; 
Mellett et  al. 2020) and paleo-coastline deposits, e.g. 
aggradational bars, which are well known in onshore 
Denmark. Buried negative landforms that are less 
expressive in the terrestrial terrain are commonly 
observed in the offshore seismic profiles as various 
forms of channels and troughs. These predominantly 
erosional features range from small troughs formed 
locally in a tidal paleo marsh setting (Coughlan et  al. 
2018) to kilometre-scale buried valleys formed by flu-
vial or subglacial processes. The Elbe Paleo-valley forms 
a major depressional feature of composite erosional 
channels that intersects the DNS in a SSE–NNW direc-
tion (Lonergan et al. 2006; Stewart et al. 2013; Moreau 
& Huuse 2014; Ottesen et al. 2014; Cotterill et al. 2017b; 
Prins & Andresen 2019; Emery et al. 2020; Prins et al. 
2020). Depending on their origin and subsequent geo-
logical evolution, e.g. the character of sedimentary infill, 
buried valleys pose different risks for offshore con-
struction, particularly deployment of jack-up rigs and 
design of appropriate wind turbine foundations. Peats 
have frequently been reported from within buried val-
leys as well as the surrounding fluvial plains (Coughlan 
et al. 2018; Hepp et al. 2019), and these pose a risk for 
cable routings, as they increase the risk of overheating 
(Bellwald et al. 2024).

By assembling and integrating all the available 
sub-surface information, geological models can be 
produced that describe spatial variations in buried 
geomorphology, litho-stratigraphy and depositional 
environments. Subsequently, geotechnical information 
can be added, or inferred, to generate a ground model 
that will be used for spatial site planning of offshore 
installations. An example is the Dogger Bank windfarm 
area, where intensive data collection and the integra-
tion of geological and geotechnical data have been 

suggested to potentially reduce the need for drilling, 
thus lowering the cost of the site survey investigations 
(Cotterill et al. 2017a).

2.2. Glacial tectonics and salt movement
The glaciation history of the DNS has led to variable 
glaciotectonic effects on the geosystems. Deformation 
in a subglacial or proglacial environment occurs when 
the weight of a moving ice sheet exerts a lateral stress 
component in the subsurface strata, causing failure 
or brittle deformation, which propagates through the 
ice-contact zone (Andersen et al. 2005). This results in 
thrusting and folding of the pre-existing strata, which 
may lead to stacking and repetition of the sedimentary 
sequences (Bennet & Glasser 2009) introducing geo-
logical heterogeneity and unpredictability in the area 
(Fig. 2B).

Glaciotectonic complexes are found throughout the 
North Sea providing evidence of ice-marginal processes 
during the last and previous glaciations (Andersen et al. 
2005; Larsen & Andersen 2005; Bendixen et  al. 2017; 
Cotterill et al. 2017b; Pedersen & Boldreel 2017; Owen 
et  al. 2020). Some of the most well-studied glaciotec-
tonic deformation structures are found on the island of 
Mors in Denmark, where diatomite and ash layers show 
extensive folding of Paleocene–Eocene deposits (Klint & 
Pedersen 1995).

Glaciotectonic thrust complexes alter the existing 
stratigraphy through deformation with potentially dis-
continuous sedimentary sequences as a result, such as 
allochthonous slabs of fine-grained material in a sandy 
matrix. This introduces increased heterogeneity and 
facies unpredictability in the area. A concrete example 
of glaciotectonically induced heterogeneity can be found 
in the Jammerbugt area, where the Upper Cretaceous 
chalk units have been deformed by glaciotectonic activ-
ity, leaving a depression that was subsequently filled 
with Eemian Weichselian deposits (Pedersen & Boldreel 
2017). Similar effects are seen in the British North Sea 
sector, where the rugged surface of thrust complexes 
has facilitated deposition of fine-grained material within 
lakes or ponds, some of which may contain organic-rich 
deposits, e.g. peat or gyttja (Cotterill et al. 2017a). For the 
final risk assessment, variability in lithology and struc-
tural character induced by glacial tectonics need to be 
integrated into the geotechnical ground model (Velen-
turf et al. 2021). Beyond the negative effects of glacial 
deformation and substratum complexities, ice loading 
may also be beneficial for offshore foundations as it 
enhances burial compaction and may lead to over-con-
solidation expressed by high shear strength and sedi-
ment stiffness (Le et al. 2014).

Deformation of the near surface sediments can 
also occur as a result of salt movement (Rank-Friend 
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& Elders 2004). And there is evidence of Quaternary 
faulting related to these salt movements (Huuse et  al. 
2001). The  most prominent influence these deep salt 
structures pose on offshore construction is through the 
faulting of the near-surface sediments as well as fluid 
migration through these faults.

2.3. Subsurface fluid migration
Subsurface fluid migration is a naturally occurring pro-
cess in sedimentary basins, principally driven by sedi-
ment compaction, decomposition of organic matter 
and development of localised pressure gradients (Judd 
& Hovland 2009). Evidence of fluid migration within 
geosystems is seen as crater-like depressions, or pock-
marks, on the seafloor (Lohrberg et al. 2020; Andresen 
et al. 2021) or in the form of gas chimneys, pipes and 
buried pockmarks on seismic data (Fig. 2A; Cartwright 
et al. 2007; Andresen et al. 2008; Andresen 2012; Moss 
et al. 2012).

Sea- or lake-floor pockmarks on bathymetry data 
(Reusch et al. 2015; Lohrberg et al. 2020; Andresen et al. 
2021) or pockmarks at the present day land surface 
(Bogoyavlensky et al. 2020) are documented from many 
sites globally – particularly sites located in hydrocar-
bon-prone sedimentary basins such as the DNS, where 
enhanced fluid flow, commonly associated with salt-in-
duced geological structures, is prevalent (Huuse et  al. 
2010; Knutz 2010) or along permafrost or gas hydrate 
regions (Walter Anthony et al. 2012).

Seafloor pockmarks may pose a risk to offshore instal-
lations. If fluid expulsion is active, overpressurised pore 
fluids may yield low sediment stability or fluidisation 
of sediments below the crater or rim of the pockmark 
(Hovland et al. 2002; Chuvilin et al. 2020). In the Norwe-
gian North Sea sector, seafloor pockmarks are a com-
mon feature in offshore windfarm development areas, 
which needs to be assessed in terms of fluid migration 
activity and potential risks (Petrie et al. 2022). Locations 
of focused fluid seepage may also present issues due 
to marine habitat protection of bubble reefs. These bio-
herms are formed by chemosynthetic organisms that 
use methane as an energy source whilst precipitating 
authigenic carbonate (Noble-James et al. 2020).

Fluid escape and the presence of shallow gas may also 
occur without a prominent seafloor expression. Gas in 
the shallow subsurface is found across most of the DNS, 
where fine-grained sediments with organic content are 
present, or where geological conditions are amenable 
to vertical gas migration (Etiope 2009; Vielstädte et  al. 
2015; Petersen & Smit 2023). In a de-risking context, it 
is important to understand the spatial distribution and 
geological context of subsurface gas accumulations as 
they can lead to gas blowouts or undermine founda-
tions for offshore installations. Thus, understanding the 

gas migration pathway through geosystems, whether 
related to natural processes or induced by human activ-
ities, such as oil and gas production (Hornafius et  al. 
1999) or wind turbine foundation is crucial for reducing 
risk elements in offshore construction (Coughlan et al. 
2021).

2.4. Combined risk elements
Fluid migration within glaciotectonised areas is a case 
of combined risk elements that can influence the geo-
technical properties within a geosystem. Fluid or gas 
migration may occur along thrust planes of the defor-
mation complex, thus acting as a conduit for deeper flu-
ids, which may reach the subsurface stratum and cause 
foundation conditions to deteriorate (Velenturf et  al. 
2021). Similar fluid migration issues may be relevant 
near large salt structures (Fig. 3).

3. From geosystems to ground models
This paper highlights the importance of understand-
ing geosystem elements that carry potential hazards 
for future energy developments in the DNS. Improving 
this knowledge will reduce physical, environmental and 
financial risks associated with the expected increase in 
offshore construction activities. This risk reduction is 
essential for avoiding accidents, project delays or can-
cellations for large offshore renewable projects that are 
a key component in meeting decarbonisation and net 
zero targets (Møllgaard et al. 2024).

The geosystems risk analyses should be treated as 
an integrated approach, since interference with one 
system can pose new unknown risks in other systems. 
For instance, although the lithological succession may 
appear static, the strain and loading induced from site 
survey drilling and construction or piling may alter the 
physical properties in the subsurface by compaction 
and fluid expulsion. Mitigation of subsurface interac-
tions occurring during the construction phase requires 
modelling of subsurface behaviour based on knowledge 
from the geological models and geosystem elements.

Integrated models that compile all geophysical, geo-
logical and geotechnical data are key for defining the 
interaction between geosystem services and the risk 
associated with a specific geosystem (Prins & Andresen 
2021; Velenturf et  al. 2021; Bellwald et  al. 2023). The 
model presented by Prins & Andresen (2021) included 
scattered data points from the Central Graben area 
from 11 site surveys including seven cone penetration 
tests (CPTs), which are 1D geotechnical measurements 
of the strength of the sediments. The data spread high-
lights the need for a better regional understanding of 
the subsurface geology. The development of offshore 
windfarm sites requires large amounts of geophysical, 
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geotechnical and geological data to ground truth the 
engineering properties of the subsurface. And as such, 
regional ground models can be improved, providing a 
better foundation for the de-risking process in future 
offshore construction projects. The improvements 
shown in the integrated ground models that are cur-
rently being produced in relation to large-scale wind 
energy projects like the Ten Noorden van de Wadde-
neilanden Wind Farm Zone in the Netherlands (see 
offshorewind.rvo.nl) have a huge potential for extrap-
olation to wider areas. It also shows how a quantita-
tive approach to integrating geological, geophysical 
and geotechnical data sets provides additional detailed 
information that also helps in the de-risking process 
(Karkov et al. 2022).

In the Irish Sea, data collected for Ireland’s marine 
resource program were used to map geotechnical and 
geological constraints for offshore construction (Cough-
lan et  al. 2020; Guinan et  al. 2020). A similar approach 
could be adopted in the DNS where offshore geolog-
ical data made available from different industry and 
academic sources allow for qualitative interpretations 
and early-stage geological models to be established. By 
leveraging a general understanding of the soil proper-
ties, implications for foundation type and design, and 
potential risks, these models provide a valuable service 
for decision-makers in marine spatial planning and the 
offshore energy industry (Coughlan et  al. 2020; Guinan 
et al. 2020). Data density has improved drastically in some 
areas of the DNS, particularly in association with a pro-
posed energy island (Knutz et al. 2022), and as the renew-
able energy transition progresses, a growing amount of 
geophysical and geotechnical data will become available. 
Much of these data will be available to the public through 
the marine raw material database ‘MARTA’ (GEUS 2024), 
which means that an increasingly larger proportion of the 
DNS can be described, for example, involving detailed 
ground models and stratigraphic schemes, which ulti-
mately allows for a more robust risk analyses.

4. Conclusions
For the DNS, three geosystems potentially containing 
hazards and forming risks to offshore construction have 
been identified (Table 1). These are:

1.	Shallow stratigraphy and geomorphology: here, 
unknown variations in soil strength and lithological 
variations across the DNS pose a risk for offshore 
construction if it is not resolved through a better gen-
eral understanding or through site survey investiga-
tions. This includes mapping of geomorphological 
features, which can contribute to large local lithologi-
cal variations within a stratigraphic unit (e.g. erosional 
valleys or coarse-grained coastal deposits) but which 

also helps highlight areas that require further 
investigation.

2.	Glacial tectonics: including the postdepositional 
alteration of the subsurface resulting in unexpected 
lithological variations (e.g. chalk in a quaternary 
setting) and potential fluid migration paths, resulting 
in unexpected geotechnical properties.

3.	Fluid migration: here, the presence of gas in the sedi-
ment causes a variety of potential hazards like expul-
sion to the water column, loss of sediment cohesion 
and strength and potential blowouts.

This review of geosystems in the DNS shows that there 
are multiple risks associated with each geosystem. It 
highlights the need for a general understanding of these 
geosystems and provides information on good practice 
for understanding and mitigating these risks. Because 
the near-surface geology of the DNS is so diverse, there 
is a need for a broad geological model that can be con-
tinuously improved upon. This model should inform 
the desktop studies and subsequent integrated ground 
models for offshore construction projects.

As we have shown, most regional geosystems and 
their distribution are known; however, we still lack spe-
cific knowledge on how the systems are interlinked, 
which exact geotechnical properties they have as well 
as the challenges they pose. As the renewable energy 
transition continues, more data will need to be gathered 
about these geosystems, and how to handle the risks 
associated with them. With increased use of oil and gas 
technology applied on shallow data, the resolution and 
accuracy will also gradually increase. To this end, some 
initiatives have already been established. These include 
a large-scale mapping project funded by the Danish 
Energy Agency, to screen Danish waters for areas that 
are unfit for windfarm construction and the NOARG 
project, funded by Geocenter Denmark (see https://www.
geocenter.dk/projekter/2023-2/), which aims to map and 
improve our understanding of buried valleys in the DNS. 
Such projects will increase regional knowledge of the 
geosystems in the DNS and how they might pose a risk 
to future offshore construction.
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