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Abstract

The renewable energy transition has increased the demand for offshore construction in the Danish
North Sea energy sector. This development underpins the need for further investigation of poten-
tial geological hazards and associated risks to avoid accidents involving people, the environment or
infrastructure. A scientific approach to de-risking requires an understanding of the seabed and the
buried geosystems. Understanding geosystems is the first step in the de-risking process of offshore
construction. In this study, we review three key geosystem elements in the Danish North Sea, repre-
sented by (1) shallow stratigraphy and geomorphology, (2) glacial tectonics and salt movement and
(3) subsurface fluid migration. We summarise the current state of knowledge of these geosystem
elements and identify multiple risks associated with each geosystem in the region. Such investiga-
tions are critical for understanding the geotechnical behaviour of the subsurface and identifying
and de-risking of potential geohazards during the construction of future energy developments in
the Danish North Sea region.

1. Introduction

The Danish North Sea (DNS) is an important asset that provides a suite of
important functions and services to Danish and international societies. These
include not only fisheries and cargo transportation but also important geo-
system services such as oil and gas production, CO, storage and offshore
renewable energy. In addition to these services, the DNS contains important
habitats for a variety of birds, fish and marine mammals (Danish Maritime
Authority 2023).

The renewable energy transition will impose increased offshore construc-
tion pressure, including windfarms, cable routes and energy islands to the
DNS. This places a demand on marine spatial planning, not just for the DNS
but the entire North Sea region, which includes the German, British, Dutch,
Belgian and Norwegian Exclusive Economic Zones (EEZs; Cotterill et al. 20173;
Fleischer et al. 2022; Petrie et al. 2022; Danish Maritime Authority 2023). The
risks associated with these large-scale offshore construction projects are
potentially immense, in terms of both geotechnical issues, health and safety
and environmental risks, including construction failure, underwater noise,
suspended sediments, pollution and changes to marine habitats (Le et al.
2014; Degraer et al. 2020; Mooney et al. 2020). Adding to the complexity of
the energy transition is the uncertainty concerning the rentability of offshore
wind projects. Sound economic models are going to be crucial for reaching a
6 GW output from offshore wind energy to meet a Danish reduction target of
70% compared to 1991 (Mgllgaard et al. 2024).
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To facilitate marine planning of the DNS in the
energy transition era that builds on safe and sustain-
able approaches, a comprehensive understanding of
the underlying marine geosystems is required. Due to
hydrocarbon prospecting and extraction over the last
five decades (Adegbamigbe et al. 2022), there is already
significant knowledge on the deep geology. A similar
knowledge base for the shallow geosystems, i.e. the
upper 500 m below the seafloor, is only just starting to
emerge.

A geosystem is closely related to the term geosys-
tem services. This has been defined as either ‘the direct
result of the planet's geodiversity’ or as providing ‘bene-
fits specifically resulting from the subsurface’ (Frisk et al.
2022). In terms of de-risking offshore construction, we
have adopted a more specific definition. Thus, geosys-
tems in this context constitute geological features that
influence offshore construction. Through reviewing pub-
lished literature, this paper describes how knowledge of
near-surface geology in the offshore environment of the
DNS can help to de-risk the offshore construction pro-
cess. We focus on three key geosystem elements rep-
resented by shallow stratigraphy and geomorphology,
glacial tectonics and salt migration and subsurface fluid
migration (Table 1).

1.1. Geological background

The North Sea is an epicontinental sea, bordered by
the UK to the west, Norway and Denmark to the east
and Germany, the Netherlands and Belgium to the
south (Fig. 1). The North Sea Basin was initiated as a
rift system in the early Triassic, which terminated in
the Paleocene (Ziegler 1992). Up to 3000 m of Cenozoic
sediments have accumulated in the basin (Cameron
et al. 1987; Huuse & Clausen 2001; Gotedowski et al.
2012; Ottesen et al. 2014). The thickness of the sed-
iments representing the Quaternary period (last
2.6 million years) may be up to 800 m in the central
North Sea (Nielsen et al. 2008; Ottesen et al. 2014;
Phillips et al. 2017). These sediments are typically
heterogenous and have been deposited, reworked and
deformed largely as a result of glacial processes asso-
ciated with the cyclic expansion and decay of large ice
sheets in north-west Europe (Knudsen & Sejrup 1993;
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Hughes et al. 2016; Rea et al. 2018; Batchelor et al. 2019;
Kirkham et al. 2022). During the Elsterian (c. 500-400
Kyr BP) and Saalian (c. 380-130 Kyr BP) glacial periods,
the entire DNS was covered by ice (Van der Vegt et al.
2012), which locally resulted in erosion into older
Palaeogene or Cretaceous deposits. Prominent rem-
nants of these glaciations are expressed as buried tun-
nel valleys (Huuse & Lykke-Andersen 2000; Benvenuti
et al. 2018; Prins et al. 2020) or as glaciotectonic com-
plexes (Andersen et al. 2005; Winsemann et al. 2020).
Conversely, the more recent Weichselian glaciation (c.
117-11.5 Kyr BP) covered only the northern and west-
ern parts of the DNS (Fig. 2D; Hughes et al. 2016).

The Last Glacial Maximum (LGM; 22-18 Kyr BP)
represents a phase of major expansion of the Fen-
noscandian Ice Sheet inducing large variations in geo-
morphology and sediment distribution across the
region. Areas close to the Weichselian ice margin are
often marked by an increase in geological complex-
ity, which may involve interlayering of till, meltwater
sediments and proglacial lake infill deposits (Fig. 2C).
These features may be preserved within buried valleys
and other paleo-landscape depressions such as those
formed by glaciotectonic deformation (Moreau & Huuse
2014; Prins & Andresen 2019).

During and after the LGM, widespread marsh depos-
its formed in a boreal semi-submerged landscape of the
German North Sea (Coughlan et al. 2018). A similar land-
scape evolution has also been suggested for the south-
western part of the DNS based on shallow seismic and
acoustic data (Prins & Andresen 2019; Andresen et al.
2022) although paleo-environmental constraints on
landscape development around the last low-stand are
sparse.

Following the last deglaciation, from about 11,000
years BP, most of the DNS was presumably above sea
level, forming a low relief landscape with lakes and
bogs commonly infilling topographic depressions
(Coughlan et al. 2018). As the post-glacial landscape
became inundated by rising sea-levels, multiple chan-
nels were formed in connection with riverine drainage
systems (e.g. Elbe Paleo-valley), which gradually trans-
formed into estuaries (Hepp et al. 2017, 2019; Prins
& Andresen 2019; Andresen et al. 2022). Continuation
of the Holocene transgression meant that by about

Table 1 Summary of geosystems and their associated risks and methods of identification.

Geosystem Associated risks

Risk-reducing investigations

Shallow stratigraphy and geomorphology
Glacial tectonics and salt movement

Fluid migration
strength.

Unpredicted lateral variations in soil behaviour.

Unpredicted lithology, potential fluid migration,
variation in geotechnical properties.

Potential blowouts, changes in soil cohesion/

Improved regional stratigraphic models.
Mapping past ice movements and their influence
on the sediments; describing overburden above
salt structures.

Understanding shallow fluid migration paths and
mechanisms; mapping shallow gas.
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Fig. 1 Map overview of the Danish North Sea (DNS) and some of the offshore activities in the area (Danish Maritime Authority 2023). Base map pro-
jection: ETRS89 UTM zone 32N. Background map: EMODnet Bathymetry. EEZ: Exclusive Economic Zone. No: Norway. DK: Denmark. DE: Germany. NL:

Netherlands. UK: United Kingdom. Red lines indicate EEZs.

9.3 Kyr BP, the DNS was subject to full marine condi-
tions and influenced by strong tidal currents that ini-
tiated the deposition of large sand banks, presently
known as Little Fisher Bank and the Jylland Bank (Leth
1996; Fig. 3). These features, like many other shallow
areas of the DNS, remain hydrographically dynamic
with mobile sand units forming the modern seabed
(Anthony & Leth 2002; Ngrgaard-Pedersen & Rodel
2021).

Our knowledge of North Sea geosystems that iden-
tifies the foundation zone for offshore constructions is
rooted in the complex Quaternary strata, involving mul-
tiple phases of deposition, erosion and glacial loading
and unloading. Although several studies on the Qua-
ternary stratigraphy in the North Sea have emerged
in recent years (Le Bot et al. 2005; Rijsdijk et al. 2005;
Cotterill et al. 2017b; Coughlan et al. 2018; Prins & Andre-
sen 2019; Petrie et al. 2022), the Quaternary succession
of the DNS remains poorly constrained, both in terms of
chronostratigraphy, lithological variation and geotech-
nical properties. Closing this knowledge-gap requires
densely spaced and high-resolution data coverage
aimed at mapping the shallow geosystems and would
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provide information that can de-risk offshore services
now and in the future.

1.2. De-risking in a geosystem context

Risk, in the context of a geosystem, can be regarded
as an assessment of the probability and consequence
resulting in a negative impact produced by a specific
geosystem element (Copping et al. 2020). This could be
the likelihood and consequence of a ship grounding in
areas with varying water depths, or the likelihood and
consequence of a punch-through failure for a jack-up
rig, installed on an undiscovered buried valley. A buried
tunnel valley poses no risk to a ship passing over it, but
if it results in a subsurface failure below a jack-up rig,
the consequences can potentially be fatal (Bienen et al.
2015). Consequences may also be financial, for exam-
ple, as recently experienced in the Neart na Gaoithe off-
shore windfarm in the UK Sector, where the likelihood
of wind turbine generator foundation installation failing
due to rockhead variability had not been foreseen and
had a financial consequence of hundreds of millions of
Euros (Watts et al. 2021). Such examples illustrate that
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Fig. 2 Overview of different categories of geosystems reported in previous publications. A: Subsurface fluid migration: flow features represented
on Innomar sub-bottom profiler data and Multibeam echosounder data as pockmarks and trapped gas (modified from Owen et al. 2021). B: Glacial
tectonics and salt movement: shown by a seismic profile and model representation of a glaciotectonic complex (modified from Bendixen et al. 2017).
TWT: two-way travel time. C: Shallow stratigraphy and geomorphology: here visualised on various geophysical data from the Baltic Sea (modified from
Bellwald et al. 2023). D: Extent of a proposed glacial lake (orange polygon) during the Last Glacial Maximum (LGM), which has potentially deposited
problematic soft clays over a large area (Green shaded areas indicate DB (Dogger Bank) and LB (Ling Bank); modified from Hjelstuen et al. 2018).

risk is closely related to the interaction between humans
and geosystems.

Understanding geosystems is the first step in the
de-risking process of offshore construction. This typ-
ically involves a desktop study, which describes the
potential risks at a specific location, based on existing
data and knowledge from the literature (e.g. Owen et al.
2020). Desktop studies highlight areas that require fur-
ther investigation and help to inform potential risks
associated with the area of interest. During the initial
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phases of site investigation, the first step is to generate
a representative preliminary ground model (PGM) for
the investigation area, which is typically based on any
existing geophysical, geological and geotechnical data.
The PGMs will then subsequently be developed further
to form a fully integrated ground model based on addi-
tional site investigations and the collection of site-spe-
cific data (Cook et al. 2014). The PGM will also aid in the
survey design to optimise ship time and thus reduce
costs. Further advantages from having a high level of

4 of 11


https://doi.org/10.34194/sj67gw16
http://www.geusbulletin.org/

GEUSBULLETIN.ORG

E] Elbe Palaeo-valley outline
Tunnel valleys (2D)

@ Dogger Bank outline

|:| Proposed glacial lake extent
— Buried valleys (3D)
—— EEZ borders

|:| Salt structures

Seabed sediments
- Mud and sandy mud

Muddy sand
Sand
Gravel and coarse sand
- Till/diamicton
- Quaternary clay &silt
Jyske Rev Lille Fiskerbanke

55°56"6"

465 .6Y .99

19.95.55

T
4°5'32"

T T
5°43'28" 7°21'39”

Fig. 3 Overview of the different geosystems at various stratigraphic depths in the Danish North Sea (DNS). EEZ: Exclusive Economic Zone. LGM: Last

Glacial Maximum.

understanding of the geosystems include reducing the
risk of project delays due to unforeseen ground con-
ditions. These are extremely costly and not only delay
the project itself but also reduce the chance of meeting
political goals such as reducing carbon emissions.

2. Geosystem elements and their
potential risks

This paper focuses on the potential risks associated
with the following three geosystem elements in the DNS
(Fig. 2):

1. shallow stratigraphy and geomorphology (Fig. 2C and
2D).

2. glacial tectonics and salt movement (Fig. 2B)

3. subsurface fluid migration (Fig. 2A)

2.1. Shallow stratigraphy and geomorphology
An understanding of the shallow stratigraphy (typically
down to 200-500 m below seabed) is the basic frame-
work for gaining information on the subsurface geo-
technical properties. Knowing the lateral and vertical
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variation in lithology and mapping subsurface strati-
graphic boundaries are essential for foundation design
for large constructions such as wind turbine generators
or artificial islands (Fig. 2C).

In the inner Danish waters, a recent desktop study
identified a thick succession of weakly consolidated gla-
ciomarine clays (Jensen & Bennike 2022). This resulted
in the windfarm project south of Hesselg to be paused
and demanded new site investigations to assess the
subsurface geological constraints in the area.

In the DNS, numerous site surveys have been carried
out in relation to offshore construction, but efforts to
synthesise the results between sites have been sparse
(Prins & Andresen 2021; Petrie et al. 2024). Integrating
geotechnical data with robust stratigraphic models has
the potential to reduce both risks and costs in relation to
offshore construction (Velenturf et al. 2021; Petrie et al.
2024) and help avoid delaying large-scale offshore con-
struction projects.

Ice-dammed lakes typically form massive deposits
of soft clay, which can pose a hazard for the develop-
ment of offshore windfarms. A phase of ice-dammed
lake development during the Last Glacial Maximum has
been suggested for the DNS area (Hjelstuen et al. 2018;
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Fig. 2D). The geographical extent of this lake phase is
bound by uncertainties although recent observations
support a wider presence across the central and south-
ern DNS (Andresen et al. 2022; Knutz et al. 2022). Fur-
ther work is needed to constrain these clay-rich units
in terms of lateral extent, thickness and geotechnical
properties.

Understanding the subsurface geology requires
knowledge of the stratigraphic units, their distribution
and their lithological variation. However, in order to
generate a predictive subsurface model, the geologi-
cal history and depositional environment need to be
constrained, which require the geomorphology and
sedimentological processes of the subsurface to be
interpreted (Cotterill et al. 2017a).

The shallow subsurface in the North Sea contains
multiple different glacial geomorphologies, includ-
ing prominent positive landforms such as eskers and
moraine ridges (Dove et al. 2017; Emery et al. 2019;
Mellett et al. 2020) and paleo-coastline deposits, e.g.
aggradational bars, which are well known in onshore
Denmark. Buried negative landforms that are less
expressive in the terrestrial terrain are commonly
observed in the offshore seismic profiles as various
forms of channels and troughs. These predominantly
erosional features range from small troughs formed
locally in a tidal paleo marsh setting (Coughlan et al.
2018) to kilometre-scale buried valleys formed by flu-
vial or subglacial processes. The Elbe Paleo-valley forms
a major depressional feature of composite erosional
channels that intersects the DNS in a SSE-NNW direc-
tion (Lonergan et al. 2006; Stewart et al. 2013; Moreau
& Huuse 2014; Ottesen et al. 2014; Cotterill et al. 2017b;
Prins & Andresen 2019; Emery et al. 2020; Prins et al.
2020). Depending on their origin and subsequent geo-
logical evolution, e.g. the character of sedimentary infill,
buried valleys pose different risks for offshore con-
struction, particularly deployment of jack-up rigs and
design of appropriate wind turbine foundations. Peats
have frequently been reported from within buried val-
leys as well as the surrounding fluvial plains (Coughlan
et al. 2018; Hepp et al. 2019), and these pose a risk for
cable routings, as they increase the risk of overheating
(Bellwald et al. 2024).

By assembling and integrating all the available
sub-surface information, geological models can be
produced that describe spatial variations in buried
geomorphology, litho-stratigraphy and depositional
environments. Subsequently, geotechnical information
can be added, or inferred, to generate a ground model
that will be used for spatial site planning of offshore
installations. An example is the Dogger Bank windfarm
area, where intensive data collection and the integra-
tion of geological and geotechnical data have been
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suggested to potentially reduce the need for drilling,
thus lowering the cost of the site survey investigations
(Cotterill et al. 2017a).

2.2. Glacial tectonics and salt movement

The glaciation history of the DNS has led to variable
glaciotectonic effects on the geosystems. Deformation
in a subglacial or proglacial environment occurs when
the weight of a moving ice sheet exerts a lateral stress
component in the subsurface strata, causing failure
or brittle deformation, which propagates through the
ice-contact zone (Andersen et al. 2005). This results in
thrusting and folding of the pre-existing strata, which
may lead to stacking and repetition of the sedimentary
sequences (Bennet & Glasser 2009) introducing geo-
logical heterogeneity and unpredictability in the area
(Fig. 2B).

Glaciotectonic complexes are found throughout the
North Sea providing evidence of ice-marginal processes
during the last and previous glaciations (Andersen et al.
2005; Larsen & Andersen 2005; Bendixen et al. 2017;
Cotterill et al. 2017b; Pedersen & Boldreel 2017; Owen
et al. 2020). Some of the most well-studied glaciotec-
tonic deformation structures are found on the island of
Mors in Denmark, where diatomite and ash layers show
extensive folding of Paleocene-Eocene deposits (Klint &
Pedersen 1995).

Glaciotectonic thrust complexes alter the existing
stratigraphy through deformation with potentially dis-
continuous sedimentary sequences as a result, such as
allochthonous slabs of fine-grained material in a sandy
matrix. This introduces increased heterogeneity and
facies unpredictability in the area. A concrete example
of glaciotectonically induced heterogeneity can be found
in the Jammerbugt area, where the Upper Cretaceous
chalk units have been deformed by glaciotectonic activ-
ity, leaving a depression that was subsequently filled
with Eemian Weichselian deposits (Pedersen & Boldreel
2017). Similar effects are seen in the British North Sea
sector, where the rugged surface of thrust complexes
has facilitated deposition of fine-grained material within
lakes or ponds, some of which may contain organic-rich
deposits, e.g. peat or gyttja (Cotterill et al. 2017a). For the
final risk assessment, variability in lithology and struc-
tural character induced by glacial tectonics need to be
integrated into the geotechnical ground model (Velen-
turf et al. 2021). Beyond the negative effects of glacial
deformation and substratum complexities, ice loading
may also be beneficial for offshore foundations as it
enhances burial compaction and may lead to over-con-
solidation expressed by high shear strength and sedi-
ment stiffness (Le et al. 2014).

Deformation of the near surface sediments can
also occur as a result of salt movement (Rank-Friend
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& Elders 2004). And there is evidence of Quaternary
faulting related to these salt movements (Huuse et al.
2001). The most prominent influence these deep salt
structures pose on offshore construction is through the
faulting of the near-surface sediments as well as fluid
migration through these faults.

2.3. Subsurface fluid migration

Subsurface fluid migration is a naturally occurring pro-
cess in sedimentary basins, principally driven by sedi-
ment compaction, decomposition of organic matter
and development of localised pressure gradients (Judd
& Hovland 2009). Evidence of fluid migration within
geosystems is seen as crater-like depressions, or pock-
marks, on the seafloor (Lohrberg et al. 2020; Andresen
et al. 2021) or in the form of gas chimneys, pipes and
buried pockmarks on seismic data (Fig. 2A; Cartwright
et al. 2007; Andresen et al. 2008; Andresen 2012; Moss
etal. 2012).

Sea- or lake-floor pockmarks on bathymetry data
(Reusch et al. 2015; Lohrberg et al. 2020; Andresen et al.
2021) or pockmarks at the present day land surface
(Bogoyavlensky et al. 2020) are documented from many
sites globally - particularly sites located in hydrocar-
bon-prone sedimentary basins such as the DNS, where
enhanced fluid flow, commonly associated with salt-in-
duced geological structures, is prevalent (Huuse et al.
2010; Knutz 2010) or along permafrost or gas hydrate
regions (Walter Anthony et al. 2012).

Seafloor pockmarks may pose arisk to offshore instal-
lations. If fluid expulsion is active, overpressurised pore
fluids may vyield low sediment stability or fluidisation
of sediments below the crater or rim of the pockmark
(Hovland et al. 2002; Chuvilin et al. 2020). In the Norwe-
gian North Sea sector, seafloor pockmarks are a com-
mon feature in offshore windfarm development areas,
which needs to be assessed in terms of fluid migration
activity and potential risks (Petrie et al. 2022). Locations
of focused fluid seepage may also present issues due
to marine habitat protection of bubble reefs. These bio-
herms are formed by chemosynthetic organisms that
use methane as an energy source whilst precipitating
authigenic carbonate (Noble-James et al. 2020).

Fluid escape and the presence of shallow gas may also
occur without a prominent seafloor expression. Gas in
the shallow subsurface is found across most of the DNS,
where fine-grained sediments with organic content are
present, or where geological conditions are amenable
to vertical gas migration (Etiope 2009; Vielstadte et al.
2015; Petersen & Smit 2023). In a de-risking context, it
is important to understand the spatial distribution and
geological context of subsurface gas accumulations as
they can lead to gas blowouts or undermine founda-
tions for offshore installations. Thus, understanding the
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gas migration pathway through geosystems, whether
related to natural processes or induced by human activ-
ities, such as oil and gas production (Hornafius et al.
1999) or wind turbine foundation is crucial for reducing
risk elements in offshore construction (Coughlan et al.
2021).

2.4. Combined risk elements

Fluid migration within glaciotectonised areas is a case
of combined risk elements that can influence the geo-
technical properties within a geosystem. Fluid or gas
migration may occur along thrust planes of the defor-
mation complex, thus acting as a conduit for deeper flu-
ids, which may reach the subsurface stratum and cause
foundation conditions to deteriorate (Velenturf et al.
2021). Similar fluid migration issues may be relevant
near large salt structures (Fig. 3).

3. From geosystems to ground models
This paper highlights the importance of understand-
ing geosystem elements that carry potential hazards
for future energy developments in the DNS. Improving
this knowledge will reduce physical, environmental and
financial risks associated with the expected increase in
offshore construction activities. This risk reduction is
essential for avoiding accidents, project delays or can-
cellations for large offshore renewable projects that are
a key component in meeting decarbonisation and net
zero targets (Mgllgaard et al. 2024).

The geosystems risk analyses should be treated as
an integrated approach, since interference with one
system can pose new unknown risks in other systems.
For instance, although the lithological succession may
appear static, the strain and loading induced from site
survey drilling and construction or piling may alter the
physical properties in the subsurface by compaction
and fluid expulsion. Mitigation of subsurface interac-
tions occurring during the construction phase requires
modelling of subsurface behaviour based on knowledge
from the geological models and geosystem elements.

Integrated models that compile all geophysical, geo-
logical and geotechnical data are key for defining the
interaction between geosystem services and the risk
associated with a specific geosystem (Prins & Andresen
2021; Velenturf et al. 2021; Bellwald et al. 2023). The
model presented by Prins & Andresen (2021) included
scattered data points from the Central Graben area
from 11 site surveys including seven cone penetration
tests (CPTs), which are 1D geotechnical measurements
of the strength of the sediments. The data spread high-
lights the need for a better regional understanding of
the subsurface geology. The development of offshore
windfarm sites requires large amounts of geophysical,
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geotechnical and geological data to ground truth the
engineering properties of the subsurface. And as such,
regional ground models can be improved, providing a
better foundation for the de-risking process in future
offshore construction projects. The improvements
shown in the integrated ground models that are cur-
rently being produced in relation to large-scale wind
energy projects like the Ten Noorden van de Wadde-
neilanden Wind Farm Zone in the Netherlands (see
offshorewind.rvo.nl) have a huge potential for extrap-
olation to wider areas. It also shows how a quantita-
tive approach to integrating geological, geophysical
and geotechnical data sets provides additional detailed
information that also helps in the de-risking process
(Karkov et al. 2022).

In the Irish Sea, data collected for Ireland’s marine
resource program were used to map geotechnical and
geological constraints for offshore construction (Cough-
lan et al. 2020; Guinan et al. 2020). A similar approach
could be adopted in the DNS where offshore geolog-
ical data made available from different industry and
academic sources allow for qualitative interpretations
and early-stage geological models to be established. By
leveraging a general understanding of the soil proper-
ties, implications for foundation type and design, and
potential risks, these models provide a valuable service
for decision-makers in marine spatial planning and the
offshore energy industry (Coughlan et al. 2020; Guinan
etal. 2020). Data density has improved drastically in some
areas of the DNS, particularly in association with a pro-
posed energy island (Knutz et al. 2022), and as the renew-
able energy transition progresses, a growing amount of
geophysical and geotechnical data will become available.
Much of these data will be available to the public through
the marine raw material database ‘MARTA' (GEUS 2024),
which means that an increasingly larger proportion of the
DNS can be described, for example, involving detailed
ground models and stratigraphic schemes, which ulti-
mately allows for a more robust risk analyses.

4. Conclusions

For the DNS, three geosystems potentially containing
hazards and forming risks to offshore construction have
been identified (Table 1). These are:

1. Shallow stratigraphy and geomorphology: here,
unknown variations in soil strength and lithological
variations across the DNS pose a risk for offshore
construction if it is not resolved through a better gen-
eral understanding or through site survey investiga-
tions. This includes mapping of geomorphological
features, which can contribute to large local lithologi-
cal variations within a stratigraphic unit (e.g. erosional
valleys or coarse-grained coastal deposits) but which
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also helps highlight areas that require further
investigation.

2. Glacial tectonics: including the postdepositional
alteration of the subsurface resulting in unexpected
lithological variations (e.g. chalk in a quaternary
setting) and potential fluid migration paths, resulting
in unexpected geotechnical properties.

3. Fluid migration: here, the presence of gas in the sedi-
ment causes a variety of potential hazards like expul-
sion to the water column, loss of sediment cohesion
and strength and potential blowouts.

This review of geosystems in the DNS shows that there
are multiple risks associated with each geosystem. It
highlights the need for a general understanding of these
geosystems and provides information on good practice
for understanding and mitigating these risks. Because
the near-surface geology of the DNS is so diverse, there
is a need for a broad geological model that can be con-
tinuously improved upon. This model should inform
the desktop studies and subsequent integrated ground
models for offshore construction projects.

As we have shown, most regional geosystems and
their distribution are known; however, we still lack spe-
cific knowledge on how the systems are interlinked,
which exact geotechnical properties they have as well
as the challenges they pose. As the renewable energy
transition continues, more data will need to be gathered
about these geosystems, and how to handle the risks
associated with them. With increased use of oil and gas
technology applied on shallow data, the resolution and
accuracy will also gradually increase. To this end, some
initiatives have already been established. These include
a large-scale mapping project funded by the Danish
Energy Agency, to screen Danish waters for areas that
are unfit for windfarm construction and the NOARG
project, funded by Geocenter Denmark (see https://www.
geocenter.dk/projekter/2023-2/), which aims to map and
improve our understanding of buried valleys in the DNS.
Such projects will increase regional knowledge of the
geosystems in the DNS and how they might pose a risk
to future offshore construction.
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