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Abstract
One of the most common ways to assess ice-sheet reconstructions of the past is to evaluate how 
they impact changes in sea level through glacial isostatic adjustment. PaleoMIST 1.0, a preliminary 
reconstruction of topography and ice sheets during the past 80 000 years, was created without a 
rigorous comparison with past sea-level indicators and proxies in Greenland. The basal shear stress 
values for the Greenland ice sheet were deduced from the present day ice-sheet configuration, 
which were used for the entire 80 000 years without modification. The margin chronology was 
based on previous reconstructions and interpolation between them. As a result, it was not known 
if the Greenland component was representative of its ice-sheet history. In this study, I compile 
sea–level proxy data into the Global Archive of Paleo Sea Level Indicators and Proxies (GAPSLIP) 
database and use them to evaluate the PaleoMIST 1.0 reconstruction. The Last Glacial Maximum 
(c. 20 000 years before present) contribution to sea level in PaleoMIST 1.0 is about 3.5 m, intermedi-
ate of other reconstructions of the Greenland ice sheet. The results of the data-model comparison 
show that PaleoMIST requires a larger pre-Holocene ice volume than it currently has to match the 
sea-level highstands observed around Greenland, especially in southern Greenland. Some of this 
mismatch is likely because of the crude 2500 year time step used in the margin reconstruction and 
the limited Last Glacial Maximum extent. Much of the mismatch can also be mitigated if different 
Earth model structures, particularly a thinner lithosphere, are assumed. Additional ice in Greenland 
would contribute to increasing the 3–5 m mismatch between the modelled far-field sea level at the 
Last Glacial Maximum and proxies in PaleoMIST 1.0.    
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1. Introduction
Sea-level change is one of the biggest threats to society, caused in part by the 
retreat of the Greenland ice sheet because of global warming (Fox-Kemper et al. 
2021). Predicting future changes in sea level is essential to protect coastal 
infrastructure and human settlements. However, the magnitude and pattern 
of sea-level changes due to ice-sheet retreat is dependent on the past history 
of the ice sheet in a process known as glacial isostatic adjustment (GIA). GIA 
is the combined result of the balance between water stored in land-based ice 
and the ocean, time-variable Earth deformation caused by variations in the 
proportion of this storage, and changes to the Earth’s gravity from changes 
in the distribution of mass. Since the Earth deformation is dependent on the 
history of ice- and water-loading, reconstructions of ice-sheet evolution in 
the past are needed to forecast the impact of changing sea levels. Green-
land itself is strongly affected by GIA-induced changes in sea level that affect 
human settlements, and have been implicated, for instance, in the collapse of 
the Norse settlements in western Greenland (Borreggine et al. 2023).

The importance of the Greenland ice sheet for projecting future sea-level 
rise means that it has been the subject of many GIA-based reconstructions. 
Some such studies that focus on Greenland are highlighted here. Tarasov & 
Peltier (2002) tuned a dynamic ice-sheet model, based on a shallow ice 
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approximation, using Holocene relative sea-level obser-
vations and temperature and age profiles from the 
Greenland ice core project (GRIP) ice core. This recon-
struction is also used in the global ICE-5G (Peltier 2004) 
and ICE-6G (Peltier et al. 2015) reconstructions. Fleming 
& Lambeck (2004) investigated the Greenland ice sheet 
using flowline-based reconstructions originally created 
by Hughes (1981) and Hughes et al. (1981), and scaled 
versions of them. Simpson et al. (2009) and Lecavalier 
et  al. (2014) created a reconstruction using a dynamic 
ice-sheet model, based on a shallow ice approximation, 
tuned to fit sea-level changes and ice extent at the Last 
Glacial Maximum (LGM).

PaleoMIST 1.0 (Paleo ice-sheet Margins, Ice Sheets 
and Topography) is a global ice sheet and topography 
reconstruction for the past 80 000 years at 2500 year 
time intervals (Gowan et  al. 2021). The ice-sheet com-
ponent was created using the perfectly plastic ice-sheet 
model ICESHEET (Gowan et  al. 2016a) using ice-sheet 
margins that were constrained from chronological, 
geological, and geomorphological constraints. The ice-
sheet reconstruction was refined through a number of 
iterations using the GIA model SELEN (Spada & Stocchi 
2007; de Boer et al. 2014, 2017). This reconstruction is 
considered to be preliminary, because of its coarse time 
step (2500 years), and the fact that it was only evaluated 

against sea-level indicators and proxies in the centre 
of the Laurentide and Eurasian ice sheets. These ice 
masses were the largest contributors to sea-level vari-
ations during the past 80 000 years, therefore smaller 
contributors such as the Greenland ice sheet were not 
rigorously evaluated.

In this paper, I compare deglacial period sea-level 
indicators and proxies from Greenland with the sea-
level response calculated from PaleoMIST 1.0. To accom-
plish this, I compiled the indicators and proxies into an 
online database called GAPSLIP (Global Archive of Paleo 
Sea Level Indicators and Proxies). My goal is to demon-
strate the misfit of the current reconstruction to sea-
level indicators and proxies to guide future refinements. 
Further refinements on the geologically constrained ice-
sheet margin and directions of ice flow will be needed to 
make a more robust reconstruction. It is also necessary 
to take into account multiple possibilities for the Earth 
rheology structure.

2. Sea-level data indicators and proxies

2.1 Archives of sea-level data
Since 2008, the PALSEA (PALeo constraints on SEA level 
rise) project has strived to gather scientists interested 

Table 1 Sea-level proxies and indicators across Greenland

Location n Marine  
limiting

Terrestrial  
limiting

Index  
points

References

North-eastern Greenland

Kap Morris Jesup 73 67 6 0 Ives et al. (1964); Funder (1982); Möller et al. (2010); Funder et al. (2011a)
Danmark Fjord 30 27 0 3 Tauber (1960, 1961, 1964); Trautman (1963); Ives et al. (1964); Funder (1982); Håkansson 

(1982); Hjort (1997); Funder et al. (2011a); Bennike & Weidick (2001)
Frederick E. Hyde Fjord 16 14 1 1 Weidick (1972a, 1973, 1977); Funder (1982); Landvik et al. (2001)
Germania Land 14 14 0 0 Landvik (1994)
Hochstetter Forland 20 12 8 0 Weidick (1977); Håkansson (1978, 1981); Hjort (1979, 1981); Björck et al. (1994b)
Hold With Hope 17 16 0 1 Hjort & Funder (1974); Håkansson (1975); Weidick (1976, 1977); Hjort (1979)
Independence Fjord 12 11 1 0 Rubin & Alexander (1960); Ives et al. (1964); Tauber (1966); Weidick (1977); Funder (1982); 

Funder & Abrahamsen (1988); Bennike (2002); Funder et al. (2011a); 
J.P. Koch Fjord 2 2 0 0 Landvik et al. (2001)
Jameson Land 17 12 5 0 Funder (1971, 1972, 1973, 1978, 1990a); Weidick (1972a, 1973, 1974); Hjort (1979); 

Ingólfsson et al. (1994); Björck et al. (1994a); Funder & Hansen (1996)
Kap Clarence Wyckoff 32 29 0 3 Ives et al. (1964); Tauber (1964); Funder (1982); Funder & Abrahamsen (1988); Funder 

et al. (2011a)
Kempe Fjord 10 10 0 0 Håkansson (1973, 1974, 1976); Hjort & Funder (1974); Weidick (1977); Hjort (1979)
Kong Oscar Fjord 53 50 0 3 Washburn & Stuiver (1962); Trautman (1963); Lasca (1966); Håkansson (1972, 1973, 

1974, 1975, 1976); Hjort & Funder (1974); Hjort (1979)
Nansen Land 6 6 0 0 Weidick (1973); Kelly & Bennike (1985, 1992); Bennike & Kelly (1987); Landvik et al. (2001)
Nioghalvfjerdsfjorden 17 17 0 0 Bennike & Weidick (2001)
Prinsesse Ingeborg Halvø 67 63 1 3 Ives et al. (1964); Funder (1982); Håkansson (1987); Funder & Abrahamsen (1988); Ben-

nike (1997); Hjort (1997); Funder et al. (2011a); Strunk et al. (2018) Tauber (1961)
Renland 5 4 1 0 Funder (1971); Hjort & Funder (1974)
Schuchert Dal 97 63 0 34 Funder (1972, 1978); Weidick (1972a); Street (1977); Hjort (1979); Funder & Hansen 

(1996); Hall et al. (2008, 2010)
Traill Ø 19 18 0 1 Håkansson (1972, 1973, 1974); Hjort (1973, 1979); Hjort & Funder (1974)
Young Sund 27 8 6 13 Weidick (1977); Hjort (1979); Christiansen et al. (2002); Pedersen et al. (2011); Bennike & 

Wagner (2012)
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in past sea-level variability to deduce changes in 
ice  sheet and ocean volume (Carlson et  al. 2019). 
For  the period after the LGM, there has been an  
effort by PALSEA to compile sea-level indicators and 
proxies in a standardised way through the associ-
ated HOLSEA (HOLocene relative SEA level) project 
(Khan et  al. 2019). A standardised database for all of 
Greenland has yet to be published. The only data set  
currently available for Greenland that is considered to 
be compatible with the HOLSEA standards is that for 
isolation basins (Long et al. 2011).

For the purposes of assessing reconstructions of the 
Greenland ice sheet, a broader database is required. 
For this study, I have compiled data for all of Greenland 
(Table 1, Fig. 1). This compilation is not done with the 
same level of rigour as a HOLSEA-style database, but 
rather is an interim product that will be replaced when 
such a study becomes available.

These data are part of the broader GAPSLIP data-
base. The database format contains fewer fields 
than the HOLSEA data sets, as it is intended to be 
used in conjunction with comparisons with mod-
elled sea level from GIA. The initial construction of 
this database structure began during previous GIA 
assessment studies (Gowan et  al. 2016b, 2021). The 
current version of GAPSLIP (2.0) features a com-
pletely revamped code structure and many bug fixes, 
and data derived from over 1000 studies. In addition 
to the Greenland data set described in this paper, it 
also incorporates HOLSEA and HOLSEA-compatible 
databases for eastern Canada (Vacchi et  al. 2018), 
eastern United States (Engelhart & Horton 2012), 
the Baltic Sea (Rosentau et al. 2021), North Sea (Vink 
et al. 2007), northern Russia (Baranskaya et al. 2018), 
Southeast Asia (Mann et al. 2019), Australia (Larcombe 
et  al. 1995; Belperio et  al. 2002; Sloss et  al. 2007;  

Table 1 (continued) Sea-level proxies and indicators across Greenland

Location n Marine  
limiting

Terrestrial  
limiting

Index  
points

References

North-western Greenland
Bessel Fjord 36 3 0 33 Weidick (1977); Blake (1987a); Bennike (2002); McNeely & Brennan (2005); Glueder et al. 

(2022)
Kangerluarsuk (Cass Fjord) 16 15 1 0 Weidick (1977); Blake (1987a); Bennike (2002); McNeely & Brennan (2005)
Hall Land 66 37 0 29 Rubin & Alexander (1960); England (1985); Kelly & Bennike (1985, 1992); Bennike & Kelly 

(1987); McNeely & McCuaig (1991); McNeely & Brennan (2005); Glueder et al. (2022)
Inglefield Fjord 10 6 4 0 Weidick (1976); Fredskild (1985); Blake et al. (1996)
Nordvestø 3 3 0 0 Kelly et al. (1999)
Thule 11 10 0 1 Funder (1990b); Kelly et al. (1999)
Tuttulissuaq 1 0 1 0 Blake (1987b); Fredskild (1985)
Warming Land 4 4 0 0 Kelly & Bennike (1985, 1992); Bennike & Kelly (1987)
Wulff land 3 3 0 0 Bennike & Kelly (1987); Kelly & Bennike (1992)

South-eastern Greenland

Ammassalik 6 0 2 4 Long et al. (2008, 2011)

South-western Greenland

Akulliit 24 10 1 13 Weidick (1972a, 1974, 1976); Jungner (1979); Long & Roberts (2002); Long et al. (2011)
Alluttoq Island 10 0 2 8 Long et al. (1999, 2006, 2011)
Eqalussuit Tasiat 5 5 0 0 Weidick (1972a, 1974)
Ikertooq Fjord 7 5 0 2 Weidick (1972a, 1973); Ten Brink & Weidick (1974); Ten Brink (1975); van Tatenhove 

et al. (1996)
Ilulissat 12 2 3 7 Weidick (1972a, 1973); Long et al. (2006, 2011)
Itilleq 11 2 0 9 Weidick (1972a); Long et al. (2009, 2011) 
Kangerluk 9 0 0 9 Föged (1989); Bennike (1995); Rasch (1997); Long et al. (2011); Souza et al. (2021)
Kangerlussuaq 34 20 4 10 Weidick (1972a, 1972b, 1973); Ten Brink & Weidick (1974); Ten Brink (1975); van Taten-

hove et al. (1996); Storms et al. (2012); Bierman et al. (2018)
Kannala 33 3 3 27 Weidick (1974, 1976); Jungner (1979); Long et al. (2003, 2011); Long & Roberts (2003)
Kapisillit 26 8 17 1 Weidick (1968, 1972b, 1975, 1976); Fredskild (1973, 1983); McGovern et al. (1996); Weid-

ick et al. (2012); Larsen et al. (2014)
Maniitsoq 5 5 0 0 Weidick (1973)
Nanortalik 24 0 0 24 Bennike et al. (2002); Sparrenbom et al. (2006b); Long et al. (2011)
Nuuk 44 25 19 0 Weidick (1973, 1976); Fredskild (1983); Berglund (2003); Hinnerson-Berglund (2004); 

Larsen et al. (2014, 2017) 
Paamiut 10 0 1 9 Woodroffe et al. (2014)
Qaqortoq 30 11 0 19 Weidick (1975); Bennike et al. (2002); Sparrenbom et al. (2006a); Fredh (2008); Randsalu 

(2008); Long et al. (2011); Bierman et al. (2018)
Qeqertarsuatsiaat 11 11 0 0 Weidick (1975); Larsen et al. (2014) 
Sisimiut 12 3 0 9 Weidick (1972a, 1973); Bennike et al. (2011); Long et al. (2011)
Tasiussarsuaq 13 4 9 0 Lasher et al. (2020)
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Lewis et  al. 2013), and Antarctica (Briggs & Tarasov 
2013; Ishiwa et  al. 2021). Data from the LGM and 
Marine Isotope Stages 3 and 4 (70 000–27 000 yr BP) 
are also included (Gowan et  al. 2022). The data-
base can be found on Github (https://github.com/
evangowan/paleo_sea_level) and will be periodically 
updated. All radiocarbon dates have been recali-
brated using OxCal (Bronk Ramsey 2009) using the 
latest calibration curves (Heaton et al. 2020; Hogg 
et al. 2020; Reimer et al. 2020). The ages in this paper 
are reported as kyr BP (thousands of years before 
present, where present is defined as the year 1950).

2.2 Data compilation
Although a data compilation has not been published 
for Greenland, a comprehensive list of studies that have 
sea-level data is contained in Lecavalier et al. (2014). All of 
the references listed in that paper were checked and the 
relevant data were included. Radiocarbon date lists from 
laboratories that frequently published data from Green-
land were also checked. I conducted a literature search 
to find papers published after Lecavalier et al. (2014). In 
total, there are 1019 data points, which were split into 
47 subregions to minimise a possible gradient in the GIA 
signal and to ensure that data cluster geographically 
(Table 1). The names of the subregions were taken from 
a geographical feature within that area. The data include 
marine-limiting points (where sea level was located 
above the elevation of the sample), terrestrial-limiting 
points (where sea level was located below the elevation 
of the sample), and sea-level indicators (also called 
index points) that provide an estimate of past sea-level 
position within a certain elevation range. Note that this 
compilation does not take into account the possibility 
of tectonically-induced elevation changes, such as the 
suspected magnitude >8 earthquake that happened 
in the Early Holocene in southern Greenland (Steffen 
et  al. 2020). Data-model comparison plots for all 47 
subregions can be found in the Supplementary File S1. 
An example of the data from Kangerlussuaq as plotted 
in the GAPSLIP database is given in Fig. 2.

In some cases, the locations of the data were not 
explicitly stated, and it had to be estimated based 
on maps and descriptions in the original studies. 
I used Google Earth™ to estimate the location in 
these cases. The location provided by Google Earth 
may have uncertainties in the order of 10s of km in 
places, since the satellite imagery was rectified using 
GSHHG (Global Self-consistent, Hierarchical, High- 
resolution Geography Database; Wessel & Smith 1996), 
which is inaccurate in Greenland [For details on the  
inaccuracy, see here: https://github.com/GenericMap-
pingTools/gshhg-gmt/issues/12, see also Henriksen 
et  al. (2000).]. This issue may introduce errors in the  
model-data comparison, depending on the gradient  
of the GIA response. The plots in this paper use a  
coastline extracted from the BEDMACHINE Greenland 
version 5 topography dataset (Morlighem et  al. 2017, 
2022) to avoid this problem.

2.3 Vertical interpretation and elevation 
uncertainties
To be a useful constraint, sea-level indicators and prox-
ies must provide context on the past sea-level position 
relative to present day. Geomorphic-based indicators 
provide an ‘indicative meaning’, in which the relative 
position of past sea level can be determined based on 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)
(k)

(l)

LGM ice margin

Present-day ice margin

Sea-level proxy

Locations in Fig. 5

Fig. 1 Map showing the locations of the 47 subregions for which there 
are data in the GAPSLIP database for Greenland and the present-day 
and LGM grounded ice-sheet margin from PaleoMIST. The locations with 
data-model comparisons shown in Fig. 5 are labelled as follows: (a) Hall 
Land (b) Kap Clarence Wyckoff (c) Germania Land (d) Young Sund (e) 
Schuchert Dal (f) Ammassalik (g) Nanortalik (h) Nuuk (i) Ikertooq Fjord (j) 
Kannala (k) Alluttoq Island (l) Thule.
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a modern analogue and within a range of uncertainty 
(Rovere et  al. 2016). For instance, a beach deposit will 
form between the ordinary berm (the upper limit of 
wave-generated deposition) and the breaking depth of 
waves. Another indicator is an isolation basin, where 
the transition of the basin from marine to lacustrine 
deposits will provide the timing for when sea level was 
positioned at the outlet of a basin (Long et al. 2011). In 
cases where samples are in littoral deposits, they can 
only be judged as marine limiting and that sea level was 
above the elevation of the deposits. Likewise, archaeo-
logical and terrestrial deposits can only indicate that sea 
level was below the elevation of the sample. Most of the 
data from Greenland are terrestrial or marine limiting 
(Table 1). Redeposited shells in diamicton and glacial  
till generally cannot be used as proxies because the  
geological context cannot be determined.

Many of the data in the database are from marine 
shells, with a limited description of the geologi-
cal context of the deposits. For these data, it is not  
possible to interpret the water depth, therefore they 
are included as marine-limiting indicators. Where the 
shells are reported from beach or beach ridge depos-
its, it is possible to infer a sea-level index point. In these 
cases, the programme IMCalc was used to produce the 
uncertainty range (Lorscheid & Rovere 2019). This pro-
gramme uses models of tidal range and wave heights 

to infer the uncertainty of the indicative meaning of 
the deposits.

One of the largest sources of data in the database 
comes from an archive of driftwood from northern 
and north-eastern Greenland reported by Funder et  al. 
(2011a). The driftwood was reported as generally depos-
ited 1–2 m above sea level by storm action, but the 
authors warned that some samples had likely moved 
downslope after deposition. The driftwood gives max-
imum ages for the sea-level position as the trees grew 
for an unknown time before deposition, and the area  
where the driftwood was found was undergoing post
glacial uplift, I have therefore, conservatively, included 
these data as marine limiting, after subtracting 2 m from 
the reported elevation.

To compare sea-level indicator and proxy data to 
modelled sea level, it is necessary to ensure the eleva-
tion of the data is reported relative to a known datum, 
usually mean sea level. The uncertainty on the eleva-
tion measurements depend on the technique used. 
For instance, elevation measurements from differential  
GPS can achieve a precision of less than 10 cm, while 
elevations derived from topographic maps can be in the 
order of metres (Rovere et al. 2016). In studies where the 
method used to determine elevation is clearly described, 
I have used the reported elevation uncertainty. However, 
the vast majority of the studies incorporated into the 
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Fig. 2 Paleo sea level and comparison with the reference model at Kangerlussuaq subregion. (a) A map of the locations of the data, including a yellow 
outline that defines the subregion. This location demonstrates the four classes of data, including marine limiting (sea level was above the data point), 
terrestrial limiting (sea level was above the data point), and index points (sea level was within a bounded elevation range), which has different 
shades depending on whether or not the uncertainty is less or greater than 10 m. (b) The elevation of the proxy data with uncertainty ranges, and the 
calculated sea level at the location of each point from the reference PaleoMIST 1.0 model. There is a gradient in the calculated sea level in this area, so 
multiple calculated sea-level curves are visible. Data uncertainties are displayed at 2σ. Data references: Weidick (1972a, b, 1973); Ten Brink & Weidick 
(1974); Ten Brink (1975); van Tatenhove et al. (1996); Storms et al. (2012); Bierman et al. (2018).
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database do not report uncertainties, the datum used 
for the elevation, the tidal range or details on how the 
elevation was measured. In these cases, I have applied 
an uncertainty based on the recommendations in  
Rovere et al. (2016). For reported elevations less than 5 m, 
an uncertainty of  ±1 m is applied. For reported elevations 
above 5 m, ±20% of the reported elevation is applied,  
up to a maximum of ±10 m. This level of uncertainty 
is justified, as it has been reported that some of the 
reported elevations of legacy Greenland data have 
errors in the order of 10 m (Woodroffe et al. 2014).

2.4 Age control
The vast majority of the age constraints of the sea-level 
indicators and proxies come from radiocarbon dates (990 
points), though there are also some constraints from opti-
cally stimulated luminescence (11 points), cosmogenic 10Be 
(15 points), and age models (2 points). All of the data, includ-
ing calibrated radiocarbon dates, are displayed at 2σ limits.

Conventional radiocarbon dates are corrected 
for the isotopic fractionation of carbon by normal-
ising to δ13C = −25‰ relative to the PeeDee Belem-
nite standard (Stuiver & Polach 1977). Many early  
radiocarbon laboratories did not follow this standard, 
and therefore those dates need to be corrected for 
the fractionation effect before calibration. A large 
portion of the dates in this database come from 
marine carbonates that have a value of approximately  
δ13C = 0‰, which equates to a roughly 400 year off-
set if not corrected. Some laboratories did correct 
for fractionation, but unconventionally normalised 
marine carbonates to this value. All the laboratory 
procedures are documented at https://github.com/
evangowan/radiocarbon_labs. Where a fractionation 
correction was required, I used the estimated values 
of δ13C listed in Stuiver & Polach (1977).

Marine carbonate radiocarbon ages need correction 
for the offset in age from the atmosphere because of the 
marine carbon reservoir. The reservoir corrections are 
derived from the Calib reservoir age database (Reimer & 
Reimer 2001). For the purposes of correcting data from 
Greenland, I have used two corrections, one for the part 
of Greenland adjacent to Baffin Bay, and another for the 
rest of Greenland (Table 2).

3. Model-data comparison

3.1 The PaleoMIST reconstruction of 
Greenland
PaleoMIST 1.0 is a preliminary ice-sheet and topography 
reconstruction for the past 80 000 years at 2500 year res-
olution (Gowan et al. 2021). The goal of this reconstruction 
was to create a generalised depiction of ice-sheet evolu-
tion over this period based on geological and geophysical 
evidence from the core areas of the North American and 
Eurasian ice sheets, which contributed to the majority 
of sea-level changes during the last glacial cycle. The ice 
sheets were constructed using the plastic ice-sheet model 
ICESHEET (Gowan et al. 2016a) assuming equilibrium con-
ditions. In the most basic version of this model (i.e. without 
variations in base topography or shear stress), the change 
in ice-surface elevation, E, at a distance, s, along a flowline 
is related to the basal shear stress τo through the following 
equation (Cuffey & Paterson 2010):

dE
ds

i
gH
0

ρ
=

τ

The density of ice is ρi and g is the gravity at the 
surface of the Earth. In this formulation, the ice-sheet  
surface profile is approximated as a parabolic shape. 
The primary variables in the model were the ice mar-
gin and basal shear stress, which control the steepness 
of the ice-surface profile. The ice margins were largely 
based on previously published margin reconstructions 
or geological evidence (e.g. Dyke 2004; RAISED Con-
sortium et  al. 2014; Hughes et  al. 2016; Dalton et  al. 
2019). The initial basal shear stress values for the paleo 
ice sheets in Europe and North America were para
meterised based on topographic and surficial geologi-
cal considerations. These values were further adjusted 
to improve the misfit between the modelled sea level 
and geological evidence of sea-level change in the core 
regions of the North American and Eurasian ice sheets 
(Baranskaya et  al. 2018; Vacchi et  al. 2018; Rosentau 
et al. 2021). In general, it was set so the shear stress val-
ues decrease during deglaciation, as the ice sheets likely 
thinned before the margin retreated. The base topogra-
phy used for the reconstruction was RTopo-2 (Schaffer 

Table 2 Reservoir age used to correct marine carbonates

Location Reservoir age Calib Map Number1 References

Western Greenland including 
Baffin Bay, Davis Strait and 
Nares Strait

39 ± 107 9, 10, 11, 34, 35, 36, 37, 38, 39, 40, 665, 666, 
721, 724, 725, 726, 727, 728, 729, 730, 782, 786, 
787, 788, 789, 986, 987, 988, 989, 990, 2062

Olsson (1980); Mörner & Funder (1990); 
McNeely et al. (2006); Coulthard et al. (2010); 
Dyke et al. (2019)

Eastern and northern 
Greenland

−51 ± 71 21, 22, 23, 25, 26, 27, 28, 29, 30, 667, 669, 
670, 671, 791

Håkansson (1973); Tauber & Funder (1975); 
Olsson (1980) 

1Map number refers to the ‘mapno’ field in the Calib reservoir age database (https://calib.org/marine/).
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et  al. 2016). The reconstructed ice sheets were calcu-
lated on a 5 km resolution grid.

Changes in sea level and topography were calcu-
lated using the GIA model SELEN (Spada & Stocchi 2007; 
de Boer et al. 2014). The rheology model used for Paleo
MIST is a three layer, spherically concentric Earth (i.e. 
a 1D) model with an 120 km thick elastic lithosphere, 
an upper mantle viscosity of 4 × 1020 Pa·s and a lower 
mantle viscosity of 4 × 1022 Pa·s. In reconstructing the 
ice sheet, the topography and sea-level changes were 
iterated several times to account for changes in the ice 
loading.

Since the Greenland ice sheet contributed only a 
small amount to sea-level change during the last glacial 
cycle, it was not a focus of investigation for PaleoMIST 
1.0. As a result, the margin history and shear stress 
values were not scrutinised to the same extent as for 
the North American and Eurasian ice sheets. The shear 
stress values were held constant through the entire time 
period. The margins were drawn through interpolation 
between the present margin and the inferred LGM mar-
gin through interpolation, with minimal considerations 
of the impacts of ice-sheet dynamics and topography.

The basal shear stress is primarily related to the topo-
graphic roughness and basal geology. In Greenland, the 
basal geology is completely unconstrained, so I divided the 
regions based only on topography (Gowan et al. 2016a). 
The domain boundaries of equal shear stress are based on 
the locations of fjords, mountain ranges and relatively flat 
areas in the interior of Greenland (Fig. 3). The value in each 
subregion was then tuned to reproduce the ice thickness 
of the modern ice-sheet configuration. In currently degla-
ciated coastal shelf regions where the ice sheet interacted 
with the ocean, the basal shear stress is assumed to be a 
low value because of the introduction of buoyancy forces 
and the presence of deforming sediments at the base. 
The value in each subregion was then tuned to reproduce 
the  ice thickness of the modern ice-sheet configuration. 
The shear stress values were held to be constant in the 
reconstruction, though thinning or reduction in elevation 
of the central parts of the ice sheet during the Holocene 
(Vinther et al. 2009; Lecavalier et al. 2013) would imply a 
reduction in shear stress in the absence of large-scale 
margin retreat. In general, the shear stress values are 
relatively high (>100 kPa) around the edges of Green-
land, where there is mountainous topography. It is lower  
(<100 kPa) in the centre where the topography is flatter and 
the ice sheet – surface elevation gradient becomes limited. 
This is related to the impact on ice-sheet dynamics of the 
mountains around the edge of Greenland that impede ice 
flow from central Greenland (Cuffey & Paterson 2010). The 
continental shelf areas are set to have a low nominal shear 
stress (<10 kPa). The low shear stress is expected because 
of the interactions with the ocean and the fact that the ice 

sheet would be underlain with unconsolidated sediments 
that would encourage ice flow.

Using the present-day basal shear stress values may 
cause the ice thickness in the interior of the Greenland 
ice sheet to be overestimated during the glacial period. 
The core of the ice sheet may have been thinner than at 
present because of dynamic effects of softer ice from 
the glacial period and lower accumulation rates (Reeh 
1985; Cuffey & Clow 1997), though it may not be possi-
ble to quantify this (Lecavalier et al. 2013). In PaleoMIST 
1.0, the increase in ice thickness in the centre of the 
Greenland ice sheet at the LGM varies between 150 and 
300 m. If the interior of the ice sheet was thinner than 
at present during the LGM, it would increase the poten-
tial maximum sea-level highstand in coastal regions 
because of a reduction of forebulge effects.

The margin reconstructions for Greenland during the 
past 80 000 years was based on a number of inferences 

Basal shear stress (kPa)

0 40 80 120 160 200

Fig. 3 Basal shear stress values used to reconstruct the Greenland ice sheet.

https://doi.org/10.34194/geusb.v53.8355
http://www.geusbulletin.org


Gowan 2023: GEUS Bulletin 53. 8355. https://doi.org/10.34194/geusb.v53.8355� 8 of 17

www.geusbul let in.org

from geological data and previously published reconstruc-
tions. The modern margin was extracted from the RTopo-2  
data set; Schaffer et al. (2016), which defines the grounded 
part of the Greenland ice sheet. This was also used as the 
margin at 7.5 kyr BP. For the 5 kyr BP time step, the mar-
gin in south-western Greenland was set to retreat about 
40 km from the present-day margin, based on evidence of 
retreat between 10 to 80 km from its current extent in the 
mid-Holocene (Funder et al. 2011b). The 2.5 kyr BP margin 
was set to be intermediate of the 5 kyr BP and modern 
margins. The margins from 10 to 17.5 kyr BP were derived 
from the reconstructions by Dyke (2004). It appears that 
these margins were drawn using the inaccurate GSHHG 
coastlines mentioned in Section 2.2, therefore the recon-
structed ice sheet will be in error in North Greenland. The 
LGM extent is based on the reconstruction presented by 

Funder et al. (2011b), and this is also used as the basis for 
the margin location to 30 kyr BP. The margin reconstruc-
tions for 77.5 to 32.5 yr BP were set to be intermediate of 
the LGM and present-day margin, with fluctuations to coin-
cide with the timing of Heinrich Events (Andrews & Voelker 
2018), and geological constraints reported in a number of 
studies (Alley et al. 2010; Funder et al. 2011b; Simon et al. 
2014; Larsen et al. 2018). The Marine Isotope Stage 4 max-
imum extent was set to 60 kyr BP, with an extent of 25 km 
landward from the LGM margin. The margin at 80 kyr BP is 
set to be the same as present.

Figure 4 shows the thickness and volume changes of 
the Greenland ice sheet since the LGM. The ice volume 
is reported as sea level equivalent (SLE), which is the ice  
volume converted to an equivalent amount of ocean-water 
volume, and divided by the modern area of the ocean  

Fig. 4 Difference in ice thickness from the present-day Greenland ice sheet in PaleoMIST 1.0, reported as sea-level equivalents (SLE) at various time 
slices. The dark green line is the location of the (grounded) ice-sheet margin. Time slices are as follows: (a) 2.5 kyr BP. (b) 5 kyr BP. (c) 7.5 kyr BP. (d) 
10 kyr BP. (e) 12.5 kyr BP. (f) 15 kyr BP. (g) 17.5 kyr BP. (h) 20 kyr BP.

(a) 2500 yr BP

–0.1 m SLE

(b) 5000 yr BP

–0.4 m SLE

(c) 7500 yr BP

0.0 m SLE

(d) 10 000 yr BP

2.2 m SLE

(e) 12 500 yr BP

2.8 m SLE

(f) 15 000 yr BP

3.4 m SLE

(g) 17 500 yr BP

3.5 m SLE

(h) 20 000 yr BP

3.5 m SLE

Ice thickness difference from present (m)

–2000 2000150010005000–500–1000–1500

https://doi.org/10.34194/geusb.v53.8355
http://www.geusbulletin.org


Gowan 2023: GEUS Bulletin 53. 8355. https://doi.org/10.34194/geusb.v53.8355� 9 of 17

www.geusbul let in.org

(361 x 106 km2). The SLE calculation also subtracts the 
modern ice volume and water volume on the continental 
shelf. At the LGM, the Greenland ice sheet contributed to 
about 3.5 m of SLE ice volume to global ice volume, less 
than 4% of the total excess ice volume in PaleoMIST 1.0. 
This value is maintained until the time slice at 12.5 kyr BP, 
when the ice volume is reduced by 0.6 m SLE. At 7.5 kyr 
BP, the ice margin is set to be the same as present, thus 
there is essentially no difference in ice volume from the 
present. The reduced extent margin in western Greenland 
caused a reduction in ice volume of 0.4 m SLE. Most of the 
additional ice in the reconstruction at the LGM is located in 
areas that are currently ice free, with only limited ice thick-
ness gain (<500 m) in much of the interior of the ice sheet.

3.2 Comparison of calculated sea level with 
proxies and indicators
The calculated sea level and data for selected loca-
tions found in Fig. 1 are shown in Fig. 5. Although the 

PaleoMIST 1.0 reconstruction has 2500 year time steps, 
the sea level is calculated by linearly interpolating the 
ice load to 500 year time steps. This is done to avoid the 
overestimation of loading caused by the fact that SELEN 
treats the load as a Heaviside function (i.e. constant ice 
volume between two time steps). Some of the locations 
contain data from a broad area where the gradient in 
the GIA signal is large. Therefore, the calculated sea level 
after deglaciation within a single location might have a 
large variations depending on the proximity to the cen-
tre of the ice load. This can be seen in the locations with 
multiple calculated sea-level curves on the figures.

Overall, the calculated sea level from PaleoMIST 1.0 
fails to achieve the high relative sea-level values implied 
by the sea-level proxy and indicator data for the Early 
Holocene. The only locations that come close are in the 
vicinity of the Nares Strait, such as Hall Land. The rela-
tively good fit there is likely a consequence of the fact 
that the neighbouring Innuitian ice sheet was tuned to 
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Fig. 5 Plots showing sea-level indicators and proxies for selected subregions around Greenland, and the calculated sea-level curves from PaleoMIST 
1.0. A darker shade of green is used for sea-level indicators that have an uncertainty range less than 10 m to emphasise their quality. Since the loca-
tions of the data often cover a broad area, there can be a gradient in the sea-level response, and so multiple calculated curves are shown. Locations 
in Fig. 1 for the following subregions: (a) Hall Land (b) Kap Clarence Wyckoff (c) Germania Land (d) Young Sund (e) Schuchert Dal (f) Ammassalik (g) 
Nanortalik (h) Nuuk (i) Ikertooq Fjord (j) Kannala (k) Alluttoq Island (l) Thule.
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fit sea-level data, although for a different Earth rheology 
model than that used in PaleoMIST 1.0 (Khosravi 2017). 
This misfit is particularly pronounced in the southern 
and western parts of Greenland, such as Nanortalik and 
Kannala. Many of these sites have tightly constrained 
sea level histories from isolation basin studies (Long 
et  al. 2011), therefore this misfit demonstrates a defi-
ciency in the model.

4 Discussion

4.1 Exploring potential solutions to the 
mismatch
One of the possible reasons that the calculated sea 
level was unable to match observations is that the Earth 
rheology structure used for PaleoMIST may be inap-
propriate. This would be unsurprising, since the value 
for lithospheric thickness (120 km) is considered to 
be appropriate in stable Precambrian cratons, where 
much of the Laurentide ice sheet was located. Though 
the core of Greenland is predominantly Precambrian 
(Henriksen et al. 2000), it is also affected by the Cenozoic 
passage of the Iceland hot spot (Rogozhina et al. 2016). 
Even so, the Earth model used in PaleoMIST is similar 
to the optimal model for eastern Greenland found by 
Simpson et al. (2009; 120 km lithosphere, 3 × 1020 Pa·s 
upper mantle and 5 × 1022) and within the range of opti-
mal models found by (Lecavalier et al. 2014). The later 
study found that there was only limited sensitivity to 
lower mantle viscosity, a result that is consistent with 
my own analysis, with the exception of northern Green-
land (see Gowan 2023a). Milne et al. (2018) found that 
variations in lithospheric thickness relative to a uniform 
value of 120 km may be responsible for over 20 m of the 
observed highstand at the start of the Holocene in some 
areas. The response to deglaciation may also be influ-
enced by time-variable (transient) viscosity of the upper 
mantle (Paxman et al. 2023).

The other main possibility is that the history of ice-
sheet volume is inappropriate. The maximum excess 
ice volume in PaleoMIST at the LGM is 3.5 m SLE (Fig. 4), 
which is less than the 4.6 m SLE value estimated by 
Simpson et al. (2009) and 4.7 m SLE estimated by Lecav-
alier et  al. (2014). However, it is more than the 3.1 m 
SLE estimated by Fleming & Lambeck (2004) and the 
1.9 m SLE estimated from Tarasov & Peltier (2002). The 
2500 time step used for the margin history may also fail 
to capture the precise timing of the retreat of the ice 
sheet, which was predicted by Lecavalier et al. (2014) to 
have largely happened between 12 and 10 kyr BP. The 
PaleoMIST model may initiate ice-sheet retreat too early 
if this is correct, which would decrease the potential  
sea-level highstand at 10 kyr BP. The model by Lecavalier 

et al. (2014) depicts the western Greenland ice sheet as 
extending to the shelf edge, in contrast to the more 
restricted extent that was used in PaleoMIST from 
Funder et al. (2011b). If this is correct, there would be a 
greater perturbation of the upper mantle response as 
the excess volume would be spread over a larger area, 
which would result in a larger highstand.

To address some of these possibilities, I have run a 
number of additional Earth and ice models, the full results 
of which can be viewed in the GAPSLIP-PaleoMIST model 
comparison reports (Gowan 2023a). To highlight some of 
the possibilities, I have selected two different Earth Mod-
els for comparison, one with a lithospheric thickness of 
60 km rather than 120 km, and another using the VM5a 
viscosity model that is used by Peltier et al. (2015; Fig. 6). 
A 60 km thick lithosphere has been inferred from parts 
of Greenland affected by the Iceland hot spot from the 
modelling of present-day uplift rates (Khan et al. 2016). 
The model used in Fig. 6 has a slightly different upper and 
lower mantle viscosity than used by Khan et al. (2016), but 
in the interests of assessing the impact of lithospheric 
thickness changes, I have not changed them to match. The  
VM5a model has a 60 km thick lithosphere, a 40 km thick 
layer below the lithosphere with a viscosity of 1 × 1022 Pa·s,  
an upper mantle viscosity of 5 × 1020 Pa·s and a lower 
mantle visosity (between 660 and 1160 km depth) of 
1.6 × 1021 Pa·s. The rest of the lower mantle has a viscosity of  
3.2 × 1021 Pa·s. I have also selected an alternative ice-sheet 
model where the basal shear stress values for Greenland 
have been increased by 20 kPa prior to 10 kyr BP. This 
has the effect of increasing the LGM ice volume to 4.8 m 
SLE, which is closer to the models by Simpson et al. (2009)  
and Lecavalier et  al. (2014). The four locations shown 
in Fig. 6 represent the different parts of northern (Kap  
Clarence Wyckoff), eastern (Schuchert Dal), southern 
(Nanortalik) and western (Kannala) Greenland.

The results show that at least for northern, eastern 
and western Greenland, an improved fit can be achieved 
by reducing the lithospheric thickness, or using the 
more complex structure of VM5a, without modifica-
tions to the ice-volume history. It is possible that the 
120 km lithosphere thickness is inappropriate for most 
of Greenland. The improved fit from the VM5a could be 
the result of having the thin high-viscosity layer under 
the lithosphere, which delays the rebound after melt-
ing compared to the elastic rheology. The weaker lower 
mantle may also change the position and increase the 
rate of collapse of the forebulge of the North American 
ice sheets. For these regions, increasing the ice thickness 
only has a relatively small improvement on matching the 
calculated sea level to the data, at least if the ice-margin 
history is unchanged. The match in southern Greenland 
is not substantially improved by either changing the ice 
thickness or Earth structure, suggesting that substantial 
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revisions on the basal shear stress and ice-margin his-
tory are required to fit these data. This misfit is not sur-
prising since the paleo ice thickness is not substantially 
different from present in southern Greenland (Fig. 4). In 
all cases, the fit may be improved by including a more 
detailed history of margin retreat such as the recently 
released PaleoGrIS margin reconstruction (Leger et  al. 
2023).

A final possibility is that the resolution of the GIA 
modelling needs to be increased. The PaleoMIST 

reconstruction used in SELEN is composed of disc  
elements with a radius of approximately 34 km and a 
spherical harmonic expansion of 256 degrees. These 
limits were considered appropriate given the prelim-
inary nature of the reconstruction, and the computa-
tional expense if the resolution was increased further. 
If the deep fjords around the margin of Greenland bias 
the elevation of the elements downwards, the pro-
gramme may interpret the ice as floating and it will 
not contribute to loading. This bias could be mitigated 

−80

−40

0

40

80

120

160
E

le
va

tio
n 

(m
)

(a) Kap Clarence Wyckoff (default) (b) Schuchert Dal (default) (c) Nanortalik (default) (d) Kannala (default)

−80

−40

0

40

80

120

160

E
le

va
tio

n 
(m

)

(e) Kap Clarence Wyckoff 
     (60 km lithosphere)

(f) Schuchert Dal (60 km lithosphere) (g) Nanortalik (60 km lithosphere) (h) Kannala (60 km lithosphere)

−80

−40

0

40

80

120

160

E
le

va
tio

n 
(m

)

(i) Kap Clarence Wyckoff (VM5a) (j) Schuchert Dal (VM5a) (k) Nanortalik (VM5a) (l) Kannala (VM5a)

−80

−40

0

40

80

120

160

E
le

va
tio

n 
(m

)

024681012

Age (kyr BP)

(m) Kap Clarence Wyckoff 
      (thick ice sheet)

024681012

Age (kyr BP)

(n) Schuchert Dal (thick ice sheet)

024681012

Age (kyr BP)

(o) Nanortalik (thick ice sheet)

024681012

Age (kyr BP)

(p) Kannala (thick ice sheet)

Marine limiting Terrestrial limiting Indicator (≤10m) Indicator (>10m) Calculated sea level

Fig. 6 Plots showing sea-level indicators and proxies for selected subregions around Greenland and the calculated sea-level curves from PaleoMIST 
1.0 using (a–d) the default Earth model, (e–h) a 60 km lithosphere thickness rather than 120 km, (i–l) using the VM5a Earth model, and (m–p) using a 
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by using higher resolution grid elements or by using a 
median filter to create the topography rather than an 
average filter or random sampling. This will be consid-
ered in future reconstructions.

4.2 Contributions to global sea level
The contribution to LGM sea level from the Greenland 
ice sheet in PaleoMIST 1.0 is 3.5 m SLE and represents 
3–4% of the LGM ice volume. This value is intermediate 
of other GIA-based ice-sheet reconstructions (Tarasov 
& Peltier 2002; Fleming & Lambeck 2004; Simpson et al. 
2009; Lecavalier et al. 2014). In Gowan et al. (2022), we 
concluded that the misfit between the calculated sea 
level and some far-field sea-level indicators (far from 
the GIA effects of the ice sheets) was because of the lack 
of smaller ice caps and glaciers, changes in land-based 
water storage and thermal expansion in the recon-
struction. From the results of this study, it is possible 
that additional ice volume from Greenland could also  
contribute to the underestimate of global ice volume at 
the LGM in PaleoMIST.

The results from this study indicate that there is 
a certain amount of ambiguity in the Greenland ice 
sheet’s contribution to global sea level at the LGM. The 
PaleoMIST reconstructed ice sheet, though intermedi-
ate of other reconstructions, does not provide a great 
match to the paleo sea-level observations. More ice, 
through increased basal shear stress or an extended 
ice margin, could be added to the reconstruction to 
reconcile some of these observations, but this can 
also be countered by accounting for lateral changes 
in lithosphere thickness and upper mantle viscosity. 
Some recently collected geological constraints, such as 
cosmogenic dates from western Greenland (Graham 
et al. 2019; Sbarra et al. 2022) and submarine landform 
features (Ó Cofaigh et al. 2013), favour larger ice-sheet 
configurations.

The consequence of this ambiguity means that it 
is difficult to constrain the history of the ice sheet for 
the purposes of predicting the future of the ice sheet. 
The momentum caused by past changes in ice-sheet 
dynamics have impacts on the current dynamics of 
the ice sheet, and may be delaying changes because of  
current global warming (Yang et  al. 2022). Whether  
having a larger (i.e. >4.5 m SLE) or smaller (i.e. <2 m SLE) 
at the LGM, impacts the current trajectory of ice-sheet 
retreat should be the subject of further investigation.

4.3 Improvements to the sea-level indicator 
and proxy database
The sea-level indicator and proxies presented in this 
study were compiled in a way that is sufficient to evalu-
ate the fit of calculated sea level. However, the database 
could be improved to reduce the vertical uncertainties 

if more details on the survey techniques were found. 
It may also be possible to determine the elevation with 
lower uncertainty using modern high-resolution topo
graphy data sets. It may be possible to infer the sea-level 
indicative range for in situ marine molluscs that are cur-
rently classified as marine limiting through scrutinising 
the geological context of the deposits, or by using the 
depth-range inference techniques proposed by Glueder 
et al. (2022). The GAPSLIP database also excludes marine 
limit-data that may not be possible to directly date using 
radiocarbon. Marine-limit data are widely available in 
Greenland (Dyke et al. 2005) and it may be possible to 
assign an age based on regional correlations or via cos-
mogenic dating techniques. Since the marine limit can 
be determined through remote sensing, it may be one 
way to determine the GIA signal in places with few other 
constraints (e.g. McMartin et al. 2022). Finally, since this 
database relied on the list of references found in Lecav-
alier et al. (2014) for data published prior to 2014, it is 
possible that key studies containing additional proxies 
were omitted. I hope to actively update the database, 
and welcome additional sea-level proxy data for inclu-
sion as they become available.

5. Conclusions
This study has presented a new publicly accessible 
archive of sea-level indicators and proxies for Greenland 
as part of the GAPSLIP database. This archive makes it 
possible to easily assess calculated sea level from GIA 
models. These data demonstrate that the pre-Holocene 
PaleoMIST 1.0 ice-sheet reconstruction likely requires 
additional ice volume in Greenland, particularly in south-
ern Greenland. It is also likely that much of the misfit 
with sea-level data is attributable to neglecting lateral 
variations in Earth rheology, and that using a thinner 
lithosphere will produce a better fit to the data without 
requiring substantially more ice. Another possibility is 
that the LGM margin of the ice sheet was more expan-
sive than inferred. The new sea-level data set could be 
supplemented with additional data and improved with 
more refined uncertainty estimates.
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