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Abstract
Estimating a covariance model for kriging purposes is traditionally done using semivariogram 
analyses, where an empirical semivariogram is calculated, and a chosen semivariogram model, 
usually defined by a sill and a range, is fitted. We demonstrate that a convolutional neural network 
can estimate such a semivariogram model with comparable accuracy and precision by training 
it to recognise the relationship between realisations of Gaussian random fields and the sill and 
range values that define it, for a Gaussian type semivariance model. We do this by training the 
network with synthetic data consisting of many such realisations with the sill and range as the 
target variables. Because training takes time, the method is best suited for cases where many 
models need to be estimated since the actual estimation itself is about 70 times faster with the 
neural network than with the traditional approach. We demonstrate the viability of the method in 
three ways: (1) we test the model’s performance on the validation data, (2) we do a test where we 
compare the model to the traditional approach and (3) we show an example of an actual applica-
tion of the method using the Danish national hydrostratigraphic model.
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Tabular abstract
Geographical coverage Fyn, Denmark
Temporal coverage N/A
Subject(s) covered Geophysics, Computational geoscience, informatics and 

remote sensing
Method type A new machine learning-based method for estimating 

locally optimised semivariogram parameters for grid 
cells in stratigraphic models followed by clustering for 
the introduction of the assumption of local stationarity.

Method name Machine learning-based semivariogram model estima-
tion and clustering

Instruments and equipment 
used

Equipment Used:

 - A sufficiently effective computer

 - MATLAB® software license

    • Machine Learning Toolbox for MATLAB

    • SIPPI Geostatistics Toolbox for MATLAB

    • mGstat Geostatistics Toolbox for MATLAB
Related publications None
Potential application(s) for this 
method

This method may be used to infer a statistical model 
from one stratigraphic model, which is useful for uncer-
tainty quantification. The method is also useful for very 
fast semivariogram modelling whenever the advantage 
of doing so outweighs the time it takes to train the 
model.
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Introduction
The properties of the subsurface are highly non-sta-
tionary, that is, they vary significantly depending on the 
location. Consequently, in statistical descriptions of the 
subsurface, there is a need for mapping non-stationarity 
in the statistical properties and for practical purposes 
also defining regions wherein local stationarity can be 
assumed (Boisvert et al. 2009).

Estimating the statistical properties of spatially dis-
tributed data is conventionally done through semivar-
iogram analysis, where an experimental semivariogram 
is calculated as half the average squared difference 
between points separated by some distance, h (Math-
eron 1963). A model is fitted to the semivariogram, 
which is typically defined by two parameters – a range 
and a sill, and oftentimes also a nugget effect (Cressie 
1993). Alternatively, it is possible to estimate a semivar-
iogram model by determining the maximum-likelihood 
combination of sill and range given the type of model. 
The likelihood for a semivariogram model is obtained 
by populating a covariance matrix using the model and 
taking the probability density of the corresponding mul-
tivariate normal distribution at the point defined by the 
data (Mardia 1990). Fitting a semivariogram and estimat-
ing the maximum-likelihood model share the drawbacks 
of being computationally intensive when many models 
need to be estimated.

We propose a new method of estimating the sill and 
range given a set of spatially distributed data using 
machine learning (ML), specifically a convolutional neu-
ral network (CNN), which is more efficient when esti-
mating many models. A CNN is trained to recognise the 
approximate mapping from a realisation of a Gaussian 
random field to the semivariogram model that defines 
its probability density function. This mapping is not 
bijective in nature, and as such, it is not a function. 
However, the network should still be able to approxi-
mate a function that resembles the mapping to some 
degree.

The idea of using a CNN for semivariogram mod-
elling has been proposed before. One study used 
separate networks for interpolation and parameter 
estimation (Jo & Pyrcz 2022). Others skipped parame-
terised models and directly estimated semivariograms 
for kriging (Li et  al. 2022). We have chosen to focus 
on estimating Gaussian model parameters using one 
network to infer their spatial distribution within large 
models and make the process computationally feasi-
ble. We test the method on the Danish national hydro-
stratigraphic model (DK-model; Stisen et al. 2020). We 
show that where local stationarity may be assumed, 
we can define regions within the hydrostratigraphic 
model with reasonable accuracy by clustering the 
models.

Required resources
The required resources are as follows:

• A sufficiently effective computer
• �MATLAB® 2022b or newer – older versions have 

not been tested for this method. Also, the Machine 
Learning Toolbox for MATLAB, SIPPI Geostatistics 
Toolbox for MATLAB and the mGstat Geostatistics 
Toolbox for MATLAB

• �Data in the form of scattered points with a value 
for each point, either with irregular spacing or as a 
regular grid

Methodological protocols
We use the CNN’s ability to efficiently detect structural 
patterns in an image, and as such, it needs a regular 
grid as input. We consider two cases: one where data 
constitute a full grid and one with scattered point data 
interpolated to produce a grid. For the network input, 
we chose the grid size 31 × 31 cells with a cell size of 100 
m, and we adapted the neural Network (NN) architec-
ture from the SqueezeNet convolutional neural network 
(Iandola et al. 2016), which is a native architecture in the 
MATLAB Machine Learning Toolbox.

Producing training, validation and test data
We produced synthetic data for the NN using the 
SIPPI toolbox in MATLAB (Hansen et al. 2013) by taking 
150 000 values for sill and range from uniform distribu-
tions, such that the sills vary between 0 m2 and 1100 m2, 
and the ranges vary between 100 m and 3000 m.

We then simulate a realisation from each of the Gauss-
ian random fields that have the Gaussian semivariance 
functions defined by the pairs of sill and range values. 
Each realisation is on the 31 × 31 grid with a cell size  
of 100 m.

To include some component of noise, we simulated 
and added one more realisation to each existing reali-
sation, with the same effective range, and the sill being 
random between 0 m2 and the sill of the original realisa-
tion itself. Figure 1 shows nine examples of the synthetic 
data.

The synthetic data are saved both as full grids and 
sets of 120 points with an x-coordinate, a y-coordinate 
and a z-coordinate. We split the synthetic data into a 
training set, consisting of 90% of the data, as well as a 
validation and a training set, each being 5% of the data.

Training the network
The network is trained with the ‘Adam’ optimisation 
algorithm, and the loss function is represented by the 
mean squared error. We used a constant learning rate of 
0.0005 and a batch size of 1000 whilst training the model 

https://doi.org/10.34194/geusb.v53.8353
http://www.geusbulletin.org


Falk & Madsen 2023: GEUS Bulletin 53. 8353. https://doi.org/10.34194/geusb.v53.8353� 3 of 7

www.geusbul let in.org

for 100 epochs. The total training time for the network is 
about 1 h. We also found that model training time could 
be reduced to only a few minutes if we included the fast 
Fourier transform as a second image input channel. Ulti-
mately, we chose not to do this because that requires us 
to calculate the Fourier transform of the data input every 
time we want to use the model. This is a disadvantage 
because it slows down the prediction process, which 
becomes an issue when applied to very large models. 
The Fourier transform could be useful if training data are 
scarce, which could be the case with non-synthetic train-
ing data. At this point, the network is ready to use, and 
only requires a 31 × 31 grid input. The training can also 
be done with point data. However, as the CNN is based 
on image convolution, one should choose an interpola-
tion method and convert the point data to a grid.

Validation
We demonstrate the advantage of using ML for the esti-
mation of the semivariogram model with a synthetic 
example, where the method is compared to the clas-
sic method of fitting an experimental semivariogram. 
We then demonstrate the advantage of applying the 
method given an actual use case.

The 5% of the data, which we set aside for validation, 
are fed to the network and serve as an initial validation test. 
The size of the validation set is 7500 data points. Figure 2 
shows the distribution of true to predicted values for the 

range and sill for the validation data set. A common way to 
estimate the sill is to simply take the sample variance of the 
scattered points, which is also shown in Fig. 2.

The predicted range values are very close to the true 
values for both scattered data and full grids. The pre-
dictions using full grids are a little more accurate, which 
we expected since the scattered points are drawn from 
the full grids and thus contain less information. The 
predictions for the sill are equally precise between the 
two cases and even share the same apparent biases. 
For example, at sill values of 500 to 1500, the ML model 
over-estimates, whilst it underestimates for sill values 
above 2000. Although we did not use bias description, 
it is possible by fitting a suitable polynomial function 
between prediction and actual values. Correcting the 
estimates to account for bias is then straightforward. 
Alternatively, it is reasonable to assume that improve-
ments in the NN itself could eliminate the bias. The vari-
ance estimate is less precise but has no bias.

Validation on synthetic data
We take a set of 1000 new synthetic realisations of size 
31 × 31, each with 120 randomly drawn points, and we 
use these points to:

1.	 �Perform a traditional semivariogram analysis with 
the following steps:

a. Calculate an empirical semivariogram from 
the points.

b. Fit a Gaussian semivariance model to the 
semivariogram using a weighted least-
squares approach, where points closer to the 
origin have greater weight.

2.  �Predict the sill and range directly with our CNN with 
the following steps:

a. �Interpolate the 120 points onto the entire 
grid.

b. Pass the interpolated grid through the CNN.

We then compare the accuracy of the estimates with 
these two methods as well as the time it takes to com-
plete. The result of the accuracy comparison is shown 
in Fig. 3 for eight different realisations. Depending 
on the specific realisation, it varies whether the fit-
ted model (black line) or CNN (blue line) is better at 
resolving the true model (red line). Across all 1000 
realisations, we see that the CNN is slightly better at 
approximating large values for the range than the tra-
ditional approach, whereas the traditional method is 
slightly better at low values. In general, both methods 
have similar performance.

However, the time that the methods need to reach 
the predictions is not the same. During the test, we 

Fig. 1 Synthetic training data produced using Gaussian semivariance 
models with random sill and range, with a component of noise. The 
circles show 120 randomly drawn points from each realisation. Shading: 
smallest values are shown in blue and largest values are shown in 
yellow, with in-between values shown in green.

Sill: 455.4   Range: 2713 Sill: 499.1   Range: 1577 Sill: 1054   Range: 1900

Sill: 431   Range: 2327 Sill: 389.5   Range: 1374 Sill: 1080   Range: 411.2

Sill: 187   Range: 1002 Sill: 575.7   Range: 2446 Sill: 206.6   Range: 455.1
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recorded the time spent for each approach and cal-
culated the average time spent per model. The CNN 
approach based on existing 31 × 31 grids was able to 
estimate 130 semivariogram models per second, whilst 
for scattered data, 111 models could be estimated per 
second. Meanwhile, the traditional semivariogram 
analysis, where a model is fitted to an experimental 
semivariogram, could only estimate 1.72 models per 
second. Of course, these numbers depend on the com-
putational resources available, but the important point 
is the relative difference in computation time between 
the methods.

The time consumption of the ML approach is only 
slightly larger when interpolating point data, suggesting 
that the CNN consumes most of the time and not the 
interpolation itself. Meanwhile, the traditional approach 
of fitting takes about 60 times more computation time.

The time consumption varies quite a bit for the tra-
ditional semivariogram analysis approach, depending on 
the number of data points used. By using only 60 points, 
it may complete as many as 30 models per second; how-
ever, this is still about one-fourth of the speed of the CNN 
and with a significant loss of accuracy. Furthermore, the 
CNN may also be optimised to become more efficient.

Validation by application of the method
Besides the validation on synthetic data, we also val-
idate our method by demonstrating how it can be 
used to solve a real problem of obtaining non-station-
ary statistical properties. When dealing with models 
with non-stationary statistics, such as very large mod-
els like the DK-model (Stisen et al. 2020), using a single 
semivariogram for kriging does not usually produce 
realistic geological structures. In our validation exam-
ple, we employ the ML approach to estimate local 
values for the range and the sill and then use a clus-
tering algorithm to divide the model into local regions 
with similar statistical properties. The algorithm is a 
type of unsupervised classification algorithm known 
as the Kohonen self-organising map (Kohonen 1991), 
which is featured as a built-in function in MAT-
LAB. With this approach, the ML algorithm enables  
kriging with a locally optimised semivariogram model, 
which should be better at handling non-stationary 
models than approaches with a fixed semivariogram 
model.

For the validation example, we employ this approach 
to the first layer in the hydrostratigrahic model on 
the Danish island of Fyn, covering roughly 3100 km2.  

Fig. 2 The panels show the precision and accuracy of the ML model in predicting range and sill. Red dots show values predicted using the scattered 
points and blue dots using full grids, and green dots show the estimation of sill using the sample variance from the 120 scattered points. The black 
trend lines indicate where points are in exact agreement with the true values. The colour-shaded regions highlight the interval within which 95% 
of predictions are made, bounded by the 2.5 percentile (lowermost coloured lines), 50 percentile (median; middle coloured lines) and 97.5 percentile 
(uppermost coloured lines).
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The sample variance is used to estimate the sill in this 
example because an unbiased estimation is prioritised 
over a precise estimation for the purpose of clustering. 
As such, the example focuses on the predicted ranges 
and the final clustering. The top left panel in Fig. 3 shows 
the ranges predicted with a 31 × 31 sliding window, 
whilst the top right panel shows the subsequent clus-
tering result.

Figure 4 illustrates how the ML algorithm iden-
tifies areas of low range where the layer has more 
high-frequency variation and areas of high range 
where the layer resembles more of a smooth curve. 
Of course, this should be seen in the context of the 
chosen window size, which is about 3100 m, and 
larger ranges than this cannot be resolved. This lim-
itation should not pose a problem since any subse-
quent kriging and simulation will be modelling the 
residual around the sliding mean from the layer 
using the same window.

The example layer shown here contains 497  369 
individual grid cells, which means that the machine 
learning algorithm can complete the semivariance 
model estimation in about 1 h and 15 min, given a 
computation rate of 111 models per second. Mean-
while, the traditional semivariogram analysis takes 
about 80 h to do the same, given a rate of 1.72 models 
per second.

Discussion and outlook
In a subsurface model with a large spatial extent, the 
assumption of stationarity in the subsurface properties 
breaks down. To do proper geostatistical modelling in 
such a case, non-stationarity must be considered (Hig-
don et al. 2022). Non-stationarity can be modelled by 
introducing locally varying anisotropy (e.g. Boisvert & 
Deutsch 2011; Bongajum et al. 2013; Pereira et al. 2023), 
but these methods can be computationally challeng-
ing for large models. Thus, practical tools needed for 
estimating the non-stationarity are currently sparse 
and not easily deployed for practitioners (Madsen et al. 
2020). Here, we briefly presented a computationally effi-
cient ML-based method that can infer Gaussian prop-
erties from a stratigraphic layer model, adding a new 
tool to the geostatistician’s toolbox to solve issues of 
non-stationarity.

During testing, several different ML approaches were 
tried, including regression trees, random forest and a 
classical NN, but the deployment and adoption of a CNN 
were the most successful. It is known that Neural Net-
works in general are universal approximators that can 
approximate any continuous Lebesgue integrable func-
tion. This was proven for networks with a fixed number 
of hidden layers and an arbitrary number of neurons, 
also known as the arbitrary width case (Hornik 1991). 
Recently, it was also proven for ReLU NNs with a fixed 

Synthetic example

10

20

30

Y
 [m

]

Semivariance [m2] Synthetic example Semivariance [m2]

10

20

30

Y
 [m

]

10

20

30

Y
 [m

]

10 20 30
X [m]

10

20

30

Y
 [m

]

0 1000 2000 3000
Distance [m]

10 20 30
X [m]

0 1000 2000 3000
Distance [m]

Synthetic data Data True model ML model Fitted model

Fig. 3 Synthetic examples: 8 realisations are shown – each of their own Gaussian semivariogram model with some component of noise. The semivari-
ance models show a high level of accuracy for the traditional fitting approach as well as the ML approach.
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number of neurons (fixed width) and an arbitrary num-
ber of hidden layers, also known as the arbitrary depth 
case (Zhou et al. 2017). In the presented use-case, the 
CNN probably produced better estimates compared to 
the other ML approaches because the convolution of 
different layers makes the CNN better at analysing the 
spatial information in the training data. With the rapid 
development in ML algorithms, the CNN might soon be 
outperformed; however, the methodology of training 
the ML model to recognise Gaussian covariances from 
point data does not change but can only improve its pre-
cision with new algorithms. This presents an improve-
ment over, for example, a traditional semivariogram 
analysis, the performance of which comes with a trade-
off between the ability to accurately predict shorter 
versus longer ranges. This trade-off occurs due to the 
constraints imposed by the weights on the experimental 
variogram at different range intervals.

The NN architecture used from SqueezeNet (Iandola 
et  al. 2016) is ideal for obtaining good predictions 
by training the model using a conventional gradient 
descent algorithm with a sufficiently large training data 
set. We found that optimal results are obtained when 
training on at least 100  000 independent realisations, 
with performance severely decreasing when training on 
less than 10 000 realisations.

The presented approach also has the major advan-
tage of having limitless training data available, although 
a reasonable amount of training data should be cho-
sen for computational feasibility. The network can also 
be trained to a larger grid than the 31 × 31 grid used 
here, giving a lot of flexibility for the specific model 
for which inference is needed. The 31 × 31 grid posed 
some issues for estimating ranges over a certain 
length. This limitation to the method can be remedied 
by increasing the grid size, but at the cost of increas-
ing computation time during training of the CNN. To 
determine the right size of the grid in a practical case, 
we suggest training two preliminary networks with 
a small grid and a slightly larger grid. If predictions 
with these two networks deviate significantly when 
applied on real data, the grid size must be increased to 
accommodate all possible ranges. The process can be 
repeated iteratively until the same range interval is pre-
dicted for both networks, indicating a reasonable min-
imum grid size. Using this strategy for the DK-model,  
a 31 × 31 grid was deemed suitable as showcased.

Our results in the synthetic case suggest that the 
deployed CNN has the same accuracy as a traditional 
automatic semivariogram fitting, but with a substan-
tial improvement in speed, which now makes it feasible 
to analyse large grids within a reasonable amount of 

Fig. 4 Method results of a layer covering the Danish island of Fyn. (a) Predicted ranges. (b) Ranges clustered into regions. (c) Layer elevation across 
the black profile shown in (a) and (b) and the predicted ranges (green/white line) across the same profile. The colour scale in (c) matches the colour 
scale in (b), showing where individual clusters are located.
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computation time as showcased in the final validation 
example to account for non-stationarity. The subsequent 
clustering also makes it possible to define regions with 
comparable statistics in the stratigraphical model. For 
further application of the estimated statistical models, 
one could infer the local statistics from the sill and range 
estimates within each cluster and use these for, for exam-
ple, localised geostatistical estimation (kriging) or simula-
tion of each cluster instead of using a stationary model 
as done in Madsen et al. (2022) for a hydrostratigraphic 
model.
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