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Down-hole permeability prediction – a chemometric 
wire-line log feasibility study from a North Sea chalk well

Kim H. Esbensen, Niels H. Schovsbo and Lars Kristensen

Permeability in chalk depends primarily on porosity but 

also on other factors such as clay and quartz content, and 

can theoretically be described by the Kozeny equation using 

empirically determined constants (Mortensen et al. 1998; 

Røgen & Fabricius 2002). Recent attempts to predict per-

meability from wire-line logs have shown that compressional 

velocity within operative chalk units, defi ned by specifi c 

surface and hydraulic properties established from stratigra-

phy and core plugs, can provide excellent well permeability 

predictions (Alam et al. 2011). High-quality predictions de-

pend on a solid knowledge of a multitude of parameters of 

the relevant ‘operative rock types’. Th e more detailed this a 

priori knowledge is, the better predictions can be achieved. 

But this approach may, or may not, be fast enough for well-

site operations or when core data are lacking. In this study, 

we illustrate a situation for direct permeability prediction if 

only well-site, wire-line logs are available.

Th is pilot study is based on multivariate descriptor rela-

tionships, specifi cally aimed at direct permeability predic-

tion, using all immediately available wire-line characteristics 

and/or core (plug) information in a top-down mode with 

sequential exclusion of non-correlated, irrelevant variables. 

We show prediction-model results based on [log] data only 

and on [log + plug] data. Other relevant descriptors could 

be included in an augmented X-matrix, such as quantitative 

core and facies descriptions while still retaining the fast well-

site perspective. However, such data were not included in this 

feasibility study.

Material and methods
Core and log data are from the M-1X well in the Danish 

part of the North Sea; core data were collected in the mid-

1990s during a multi-disciplinary reservoir study (Dons et 

al. 1995). Th e M-1X well intersects the Danian Ekofi sk For-

mation and the Maastrichtian Tor Formation (Kristensen 

et al. 1995). Core analysis included determinations of con-

ventional He-porosity and air permeability, whole-rock Ca, 

Mg, Fe, Mn and Sr concentrations, δ13C and δ18O isotope 

ratios, per cent carbonate and per cent non-carbonate. Be-

fore data analysis all concentrations were corrected to rep-

resent weight pr. volume. M-1X was drilled in 1971 on the 

Dan Field structure (Fig. 1), and encountered a c. 200 m 

thick hydrocarbon-bearing zone in the chalk. Petrophysical 

evaluation shows the top reservoir is at 1800 m; a gas cap was 

encountered down to 1880 m and the oil–water contact was 

found at 2036 m. A 192 m long core was collected from the 

hydrocarbon-bearing zone with a core recovery of c. 75%. 

Wire-line logs included gamma ray (GR), sonic, formation 

density, spontaneous potential (SP), calliper, induction log 

(deep resistivity), lateral log (deep resistivity), micro-lateral 

log (shallow resistivity; MLL) and short normal resistivity 

(medium resistivity). Core data depth and well-log readings 

were adjusted and aligned applying an estimated common 

depth shift  of 3 m. Log readings were sampled for each plug 

depth to ensure a common plug-log training data set.

Two chemometric techniques were used, Principal Com-

ponent Analysis (PCA) and Partial Least Squares (PLS) 

regression. PCA transforms a matrix of measured data (N 

samples, P variables), X, into sets of projection sub-spaces de-

lineated by Principal Components (each a linear combination 

of all P variables), which display variance-maximised interre-
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Fig. 1. Location of well M-1X in the Dan Field in the Danish part of the 

North Sea.
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lationships between samples and variables respectively (Mar-

tens & Næs 1989; Höskuldsson 1996; Esbensen 2010). PCA 

score plots display groupings, or clusters, between samples 

based on compositional similarities, as described by the vari-

able correlations (shown in accompanying loading plots), and 

also quantify the proportion (%) of total data-set variance that 

can be modelled by each component, see Fig. 2. All data analy-

ses in this work are based on auto-scaled data [X-X(avr)/std].

PLS regression replaces the classical multiple linear 
regression and allows direct correlations to be modelled 
between y and the multivariate X data, among other 
compensating for debilitating co-linearity between x-
variables, (Martens & Næs 1989; Höskuldsson 1996; Es-

bensen 2010). PLS regression models are used extensively 
in science, technology and industry for prediction pur-
poses where the critical success factor is proper validation 
(Esbensen & Geladi 2010). Both PCA and PLS result 
in informative score plots, loading plots (PLS: loading-
weights) and prediction validation plots, which are the 
prime vehicles for detailed interpretation of complex 
data relationships. PLS components are based on [X,y] 
covariance optimisation, but the scientifi c interpretation 
of the derived scores and loading-weights plots follows 
procedures which are identical to the PCA. Validation 
was based on a test set prepared before modelling: As the 
M-1X data set is limited, it was sorted with respect to the 
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A B Fig. 2. Principal component analysis. A: Loading 

and B: Score relations for the full training data 

set (Ekofisk, Tor and Hod Formations). The 

plot models 69% of the total data variance, the 

proportions are shown along each component 

axis (38 + 31%). A: abbreviations see Fig. 3.
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Fig. 3. PLS regression model [log + plug] variable 

set; full training set with Ekofisk, Tor and Hod 

Formations. A: PLS X-space score plot (t1-t2). 

B: Corresponding loading-weights plot (w1-w2). 

C: Modelled y-variance. D: Prediction versus 

reference plot. Two outliers were deleted from the 

original data set. Proportions of total data vari-

ance modelled shown along each PLS component 

[X%, y%]. GR: gamma ray. DT: compressive 

wave interval travel time. RHOB: formation 

density. IL: induction log. LL: lateral log. MLL: 

micro lateral log. SN: short normal resistivity. SP: 

spontaneous potential. Por: He-porosity. Perm: 

air permeability. Ca: calcium. Mg: magnesium. 

Fe: iron. Mn: manganese. Sr: strontium. carb: 

carbonate volume content [calculated]. NonC: 

non-carbonate [calculated as 100% – carbonate 

volume %]. For data analysis, concentrations were 

transformed to weight per volume rock values. 

Legend see Fig. 2
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full permeability range before being randomly split into 
two independent data sets, i.e. the training versus the test 
set, securing a realistic prediction performance valida-
tion (Esbensen 2010; Esbensen & Geladi 2010). 

Results
Th ere is a marked and fundamental diff erence in rock prop-

erties between the Ekofi sk Formation and the Tor and Hod 

Formations (Fig. 2). Th e Ekofi sk Formation shows a high 

concentration of non-carbonate, Fe and Mn and high GR 

and MLL levels. Th ese characteristics are well-known from 

the North Sea region, which forces a cautious approach to 

data set defi nition. Th e developed permeability model may, 

or may not, apply to both the Tor and the Hod Formations 

and the Ekofi sk Formation. Th is will depend on whether the 

relationships between the X data from the three formations 

are similar with respect to correlation to permeability.

A two-component PLS model on the full (log + plug) vari-

able set predicts permeability with satisfactory validation re-

sults as seen in the prediction versus reference plot in Fig. 3 

(slope 0.88; r2 = 0.83), suggesting that the PLS model leads 

to better permeability estimates than normally achieved from 

conventional poro-perm plots. Conventional statistics per-

taining to a fi tted linear regression model between predicted 

(y) versus reference (x) values are used to express the degree of 

prediction strength: slope and regression coeffi  cient, r2. For 

both these modelling indices the criterion is to be as close to 

1.00 as possible. Such validation statistics must be based on 

proper validation (Esbensen & Geladi 2010). Th e permeabil-

ity model is primarily carried by positively correlated Por, LL, 

IL, SN and negatively correlated RHOB and GR, but several 

other log and composition variables also have minor, but sig-

nifi cant infl uence. From the loading-weights plot it is diffi  cult 

to resolve any fully irrelevant variables; PLS models benefi t 

from using a full X-variable complement; variable selection is 

not needed in this case. Variable relationships are interpreted 

in the more appropriate PLS loading-weight plots; a technical 

detail not to be elaborated on here, as interpretation follows 

the same principles (Martens & Næs 1989; Esbensen 2010).

Figure 4 shows permeability prediction only based on log 

data (Ekofi sk Formation excluded), simulating a situation 

in which there are only well-site, wire-line logs available for 

the fastest possible permeability prediction. Th e validation 

results for this model (slope 0.77; r2 = 0.75) are lower, but still 

acceptable for direct on-site permeability screening based on 

Fig. 4. PLS regression model (logs only). A: PLS 

X-space loading weights plot (t1-t2). B: Prediction 

versus reference plot. Proportions of total data 

variance modelled shown along each PLS compo-

nent [X%, y%]. Legend see Fig. 2, abbreviations 

see Fig. 3.
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porosity measurements. B: Predicted air permeability based on the model 
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contemporaneous log data alone. Th e results in Figs 3 and 

4 indicate that the Tor Formation can be modelled equally 

well with, or without, the Hod Formation.

Figure 5 shows stratigraphic permeability results for the 

all-logs prediction model (Fig. 4), plotted together with 

measured core porosity (%) and density. An all-logs predic-

tion model is fully able to characterise the Hod and Tor 

Formations, but not the Ekofi sk Formation. For the latter, 

additional core information is necessary (Fig. 3). 

Discussion
Th e compositional diff erence between the Ekofi sk Forma-

tion and the Tor Formation has also previously been stud-

ied by multivariate data analysis (Kunzendorf & Sørensen 

1989), pointing to a relationship between reservoir quality 

and geochemistry. Røgen & Fabricius (2002) showed that 

these compositional and textural relations are also refl ected 

in specifi c surface area diff erences between the formations, 

and thus in permeability and porosity diff erences.

Our analysis shows that high permeability is closely re-

lated to high porosity, and to high resistivity (Fig. 3; LL, IL, 

SN), whereas low permeability is related to high density and 

high GR, high non-carbonate content and thus to impure 

chalk with high concentrations of Mn, Fe and Mg. Røgen & 

Fabricius (2002) also showed that quantitative mineral data 

can help to explain permeability values better.

Our analysis also shows that permeability predictions 

from wire-line logs alone strongly depend on the sonic and 

resistivity logs (Fig. 4; DT, IL, LL, SN and SP). Th ese fi nd-

ings complement those of Alam et al. (2011) in which perme-

ability was also predicted but based on the sonic log alone 

(DT). Our analysis further shows that it is pos sible to model 

permeability more comprehensively by including the full set 

of readily available wire-line logs.

Conclusions
Th e present study confi rms that multiple parameters control 

permeability levels. Both log data and core data can be used 

advantageously in direct PLS prediction; there are real ben-

efi ts in including the full set of available well-site parameters. 

Prediction of permeability from models based on log infor-

mation alone is useful for screening purposes, whereas per-

meability prediction from models based on both log data and 

core data are, not surprisingly, signifi cantly better. Which 

approach to use depends on the context in which permeabil-

ity prediction is used, especially on the time available for se-

curing the additional core information from the laboratory.

Th is study shows that direct well-site permeability predic-

tion is feasible. Improvements can be made by adding stand-

ard He-porosity data and other easily measured conventional 

laboratory core parameters. Th e feasibility study was based 

on a 192 m long chalk interval in a single well only. Th e data-

base can be extended to include more of the comprehensive 

core data available from the Danish North Sea. Based on an 

augmented data set, it is in principle an easy task to refi ne 

this pilot study to investigate the more general limits of the 

feasibility demonstrated.

A parallel study based on a similar approach using log data 

and logs + core data also proved successful for prediction of 

‘functional rock types’ for other lithologies than chalk, i.e. 

Alum Shale (Schovsbo et al. 2015). Functional rock types 

may correlate with rock strength and can here be used for 

optimisation of the completion design.
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